ترغب بنشر مسار تعليمي؟ اضغط هنا

43 - A.C. Fabian 2011
The brightest galaxy in the nearby Perseus cluster, NGC1275, is surrounded by a network of filaments. These were first observed through their Halpha emission but are now known to have a large molecular component with a total mass approaching 10^11Msu n of gas. The filaments are embedded in hot intracluster gas and stretch over 80 kpc. They have an unusual low excitation spectrum which is well modelled by collisional heating and ionization by secondary electrons. Here we note that the surface radiative flux from the outer filaments is close to the energy flux impacting on them from particles in the hot gas. We propose that the secondary electrons within the cold filaments, which excite the observed submillimetre through UV emission, are due to the hot surrounding gas efficiently penetrating the cold gas through reconnection diffusion. Some of the soft X-ray emission seen from the filaments is then due to charge exchange, although this is insufficient to account for all the observed X-ray flux. The filaments are complex with multiphase gas. Interpenetration of hot and cold gas leads to the filaments growing in mass, at a rate of up to 100Msunpyr. The lack of soft X-ray cooling emission in cool core clusters is then due to the non-radiative cooling of hot gas on mixing with cold gas around and within the central galaxy.
85 - J.S. Sanders 2009
We examine deep XMM-Newton Reflection Grating Spectrometer (RGS) spectra from the cores of three X-ray bright cool core galaxy clusters, Abell 262, Abell 3581 and HCG 62. Each of the RGS spectra show Fe XVII emission lines indicating the presence of gas around 0.5 keV. There is no evidence for O VII emission which would imply gas at still cooler temperatures. The range in detected gas temperature in these objects is a factor of 3.7, 5.6 and 2 for Abell 262, Abell 3581 and HCG 62, respectively. The coolest detected gas only has a volume filling fraction of 6 and 3 per cent for Abell 262 and Abell 3581, but is likely to be volume filling in HCG 62. Chandra spatially resolved spectroscopy confirms the low volume filling fractions of the cool gas in Abell 262 and Abell 3581, indicating this cool gas exists as cold blobs. Any volume heating mechanism aiming to prevent cooling would overheat the surroundings of the cool gas by a factor of 4. If the gas is radiatively cooling below 0.5 keV, it is cooling at a rate at least an order of magnitude below that at higher temperatures in Abell 262 and Abell 3581 and two-orders of magnitude lower in HCG 62. The gas may be cooling non-radiatively through mixing in these cool blobs, where the energy released by cooling is emitted in the infrared. We find very good agreement between smooth particle inference modelling of the cluster and conventional spectral fitting. Comparing the temperature distribution from this analysis with that expected in a cooling flow, there appears to be a even larger break below 0.5 keV as compared with previous empirical descriptions of the deviations of cooling flow models.
We examine the core of the X-ray bright galaxy cluster 2A 0335+096 using deep Chandra X-ray imaging and spatially-resolved spectroscopy, and include new radio observations. The set of around eight X-ray bright blobs in the core of the cluster, appear ing like eggs in a birds nest, contains multiphase gas from ~0.5 to 2 keV. The morphology of the coolest X-ray emitting gas at 0.5 keV temperature is similar to the Halpha emitting nebula known in this cluster, which surrounds the central galaxy. XMM-Newton grating spectra confirm the presence of material at these temperatures, showing excellent agreement with Chandra emission measures. On scales of 80 to 250 kpc there is a low temperature, high metallicity, swirl of intracluster medium as seen in other clusters. In the core we find evidence for a further three X-ray cavities, in addition to the two previously discovered. Enhancements in 1.5 GHz radio emission are correlated with the X-ray cavities. The total 4PV enthalpy associated with the cavities is around 5x10^59 erg. This energy would be enough to heat the cooling region for ~5x10^7 yr. We find a maximum pressure discontinuity of 26 per cent (2 sigma) across the surface brightness edge to the south-west of the cluster core. This corresponds to an upper limit on the Mach number of the cool core with respect to its surroundings of 0.55.
181 - J.S. Sanders IoA 2008
We present results from deep Chandra and XMM-Newton observations of the relaxed X-ray luminous galaxy cluster Abell 2204. We detect metallicity inhomogeneities in the intracluster medium on a variety of distance scales, from a ~12 kpc enhancement con taining a few times 10^7 Msun of iron in the centre, to a region at 400 kpc radius with an excess of a few times 10^9 Msun. Subtracting an average surface brightness profile from the X-ray image yields two surface brightness depressions to the north and south of the cluster. Their morphology is similar to the cavities observed in cluster cores, but they have radii of 240 kpc and 160 kpc and have a total enthalpy of 2x10^62 erg. If they are fossil radio bubbles, their buoyancy timescales imply a total mechanical heating power of 5x10^46 erg/s, the largest such bubble heating power known. More likely, they result from the accumulation of many past bubbles. Energetically this is more feasible, as the enthalpy of these regions could combat X-ray cooling in this cluster to 500 kpc radius for around 2 Gyr. The core of the cluster also contains five to seven ~4 kpc radius surface brightness depressions that are not associated with the observed radio emission. If they are bubbles generated by the nucleus, they are too small to balance cooling in the core by an order of magnitude. However if the radio axis is close to the line of sight, projection effects may mask more normal bubbles. Using RGS spectra we detect a FeXVII line. Spectral fitting reveals temperatures down to ~0.7 keV; the cluster therefore shows a range in X-ray temperature of at least a factor of 15. The quantity of low temperature gas is consistent with a mass deposition rate of 65 Msun/yr.
37 - A.C. Fabian IoA 2007
Many Active Galactic Nuclei (AGN) are surrounded by gas which absorbs the radiation produced by accretion onto the central black hole and obscures the nucleus from direct view. The dust component of the gas greatly enhances the effect of radiation pr essure above that for Thomson scattering so that an AGN which is sub-Eddington for ionized gas in the usual sense can appear super-Eddington for cold dusty gas. The radiation-pressure enhancement factor depends on the AGN spectrum but ranges between unity and about 500, depending on the column density. It means that an AGN for which the absorption is long-lived should have a column density N_H>5x10^23 lambda cm^-2, where lambda is its Eddington fraction L_bol/L_Edd, provided that N_H}>5x10^21 cm^-2. We have compared the distribution of several samples of AGN - local, CDFS and Lockman Hole - with this expectation and find good agreement. We show that the limiting enhancement factor can explain the black hole mass - bulge mass relation and note that the effect of radiation pressure on dusty gas may be a key component in the feedback of momentum and energy from a central black hole to a galaxy.
145 - J.N. Reeves 2006
Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MC G -5-23-16, MCG -6-30-15, NGC 4051, NGC 3516, NGC 2110, 3C 120 and NGC 2992. The broad iron K$alpha$ emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG -6-30-15 shows the most extreme relativistic blurring of all the objects, the red-wing of the line requires the inner accretion disk to extend inwards to within 2.2Rg of the black hole, in agreement with the XMM-Newton observations. Strong excess emission in the Hard X-ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton-thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG -6-30-15, MCG -5-23-16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power-law, while the iron line and reflection component remain relatively constant.
44 - R.J.H. Dunn IoA 2006
We revisit a method to obtain upper limits on the jet matter content combining synchrotron self-absorption constraints and the large scale bubble energy. We use both X-ray observations, which give limits on the jet power from the energies and timesca les of bubbles found in clusters of galaxies, and radio observations, which give limits on the magnetic field in the jets. Combining the two imposes constraints on the particle number density, and hence the jet content. Out of a sample of clusters which have clear radio bubbles, there are only two which have sufficient resolution in the radio images to give significant constraints, under the assumption that the jets are fairly steady. The results for M87 and Perseus indicate that the radio emitting region of the jet is electron-positron dominated, assuming that the minimum of the electron energy distribution, gamma_min~1.
258 - W. Yuan n YNAO/NAOC 2006
(abridged) We firstly present the results of X-ray spectroscopic observations with XMM-Newton for four high-redshift radio-loud quasars at z>4. These observations more than double the number of z>4 radio-loud quasars having X-ray spectroscopic data t o seven, which compose a significant subset of a flux-limited sample of z>4 radio-loud quasars. Based on this subset we show some preliminary results on the overall X-ray spectral properties of the sample. Soft X-ray spectral flattening, which is thought to arise from intrinsic X-ray absorption, was found in about half of the sample. We give a preliminary distribution of the absorption column density NH. For those with detected X-ray absorption, the derived NH values fall into a very narrow range (around a few times 10^(22)cm^(-2) for `cold absorption), suggesting a possible common origin of the absorber. Compared to lower-redshift samples at z<2, there is an extension, or a systematic shift, toward higher values in the intrinsic NH distribution at z>4, and an increase of the fraction of radio-loud quasars showing X-ray absorption toward high redshifts. These results indicate a cosmic evolution effect, which seems to be the strongest at redshifts around 2. The rest frame 1-50keV continua have photon indices with a mean of 1.64 and a standard deviation of 0.11. Variability appears to be common on timescales from a few months to years in the quasar rest-frame, sometimes in both fluxes and spectral slopes.
116 - A.C. Fabian 2005
We report results obtained from six XMM-Newton observations of the Seyfert galaxy 1H 0419-577. Here we show that the X-ray spectrum and variability are well described by a two-component model comprising a power law with constant spectral shape and va riable normalisation and a much more constant ionised reflection component from the inner accretion. One of the observations was performed when the source was in a particularly low flux state in which the X-ray spectrum is rather peculiar and exhibits a very flat hard spectrum with broad residuals below 6.6 keV and a steep soft excess below about 1 keV. We interpret the spectrum as being reflection-dominated by X-ray reprocessed emission from the inner accretion disc. The primary continuum is almost completely unobserved possibly because of strong light bending towards the central black hole. The ionised reflection model simultaneously accounts for the broad residuals and hard flat spectrum and for the soft excess. The same model provides an excellent description of the data at all the other flux levels, the most important difference being a variation in the power law normalisation. Our results imply that most of the X-ray emission in this source originates from within few gravitational radii from the central black hole and requires that the compact object is an almost maximally spinning Kerr black hole. (abridged)
41 - W. Yuan 2004
We present results from a new XMM-Newton observation of the high-redshift quasar RXJ1028.6-0844 at a redshift of 4.276. The soft X-ray spectral flattening, as reported by a study with ASCA previously (Yuan et al. 2000, ApJ 545, 625), is confirmed to be present, however, with reduced column density when modelled by absorption. The inferred column density for absorption intrinsic to the quasar is 2.1(+0.4-0.3)x10^22 (cm^-2) for cold matter, and higher for ionised gas. The spectral flattening shows remarkable similarity with those of two similar objects, GB1428+4217 (Worsley et al. 2004, MNRAS 350, L67) and PMNJ0525-3343 (Worsley et al. 2004, MNRAS 350, 207). The results improve upon those obtained from a previous short-exposure observation for RXJ1028.6-0844 with XMM-Newton (Grupe et al. 2004, AJ 127, 1). A comparative study of the two XMM-Newton observations reveals a change in the power-law photon index from Gamma ~1.3 to 1.5 on timescales of about one year. A tentative excess emission feature in the rest-frame 5-10keV band is suggested, which is similar to that marginally suggested for GB1428+4217.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا