ترغب بنشر مسار تعليمي؟ اضغط هنا

191 - M. Krips , A.B. Peck , K. Sakamoto 2007
We present Submillimeter Array observations of the z=3.91 gravitationally lensed broad absorption line quasar APM08279+5255 which spatially resolve the 1.0mm (0.2mm rest-frame) dust continuum emission. At 0.4 resolution, the emission is separated int o two components, a stronger, extended one to the northeast (46+/-5mJy) and a weaker, compact one to the southwest (15+/-2mJy). We have carried out simulations of the gravitational lensing effect responsible for the two submm components in order to constrain the intrinsic size of the submm continuum emission. Using an elliptical lens potential, the best fit lensing model yields an intrinsic (projected) diameter of ~80pc, which is not as compact as the optical/near-infrared (NIR) emission and agrees with previous size estimates of the gas and dust emission in APM08279+5255. Based on our estimate, we favor a scenario in which the 0.2mm (rest-frame) emission originates from a warm dust component (T_d=150-220K) that is mainly heated by the AGN rather than by a starburst (SB). The flux is boosted by a factor of ~90 in our model, consistent with recent estimates for APM08279+5255.
Phase closure at 682 GHz and 691 GHz was first achieved using three antennas of the Submillimeter Array (SMA) interferometer located on Mauna Kea, Hawaii. Initially, phase closure was demonstrated at 682.5 GHz on Sept. 19, 2002 using an artificial gr ound-based beacon signal. Subsequently, astronomical detections of both Saturn and Uranus were made at the frequency of the CO(6-5) transition (691.473 GHz) on all three baselines on Sept. 22, 2002. While the larger planets such as Saturn are heavily resolved even on these short baselines (25.2m, 25.2m and 16.4m), phase closure was achieved on Uranus and Callisto. This was the first successful experiment to obtain phase closure in this frequency band. The CO(6-5) line was also detected towards Orion BN/KL and other Galactic sources, as was the vibrationally-excited 658 GHz water maser line toward evolved stars. We present these historic detections, as well as the first arcsecond-scale images obtained in this frequency band.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا