ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a kinematic analysis of jet component motion in the VLBI jet of the BL Lac object S5 1803+784, which does not reveal long-term outward motion for most of the components. Understanding the complex kinematic phenomena can possibly provide in sights into the differences between quasars and BL Lac objects. The blazar S5 1803+784 has been studied with VLBI at $ u$ =1.6, 2.3, 5, 8.4, and 15 GHz between 1993.88 and 2005.68 in 26 observing runs. We (re)analyzed the data and present Gaussian model-fits. We collected the already published kinematic information for this source from the literature and re-identified the components according to the new scenario presented in this paper. Altogether, 94 epochs of observations have been investigated. A careful study of the long-term kinematics reveals a new picture for component motion in S5 1803+784. In contrast to previously discussed motion scenarios, we find that the jet structure within 12 mas of the core can most easily be described by the coexistence of several bright jet features that remain on the long-term at roughly constant core separations (in addition to the already known {it stationary} jet component $sim$ 1.4 mas) and one faint component moving with an apparent superluminal speed ($sim$ 19c, based on 3 epochs). While most of the components maintain long-term roughly constant distances from the core, we observe significant, smooth changes in their position angles. We report on an evolution of the whole jet ridge line with time over the almost 12 years of observations. The width of the jet changes periodically with a period of $sim$ 8 to 9 years. We find a correlation between changes in the position angle and maxima in the total flux-density. We present evidence for a geometric origin of the phenomena and discuss possible models.
The BL Lac object S5 0716+71 was observed in a global multi-frequency campaign to search for rapid and correlated flux density variability and signatures of an inverse-Compton (IC) catastrophe during the states of extreme apparent brightness temperat ures. The observing campaign involved simultaneous monitoring at radio to IR/optical wavelengths centered around a 500-ks INTEGRAL pointing (November 10-17, 2003). We present the combined analysis and results of the cm- to sub-mm observations including a detailed study of the inter- to intra-day variability and spectral characteristics of 0716+714. We further constrain the variability brightness temperatures (T_B) and Doppler factors (delta) comparing the radio-bands with the hard X-ray emission (3-200 keV). 0716+714 was in an exceptionally high state (outburst) and different (slower) phase of short-term variability. The flux density variability in the cm- to mm-bands is dominated by a correlated, ~4 day time scale amplitude increase of up to ~35% systematically more pronounced towards shorter wavelengths. This contradicts expectations from standard interstellar scintillation (ISS) and suggests a source-intrinsic origin of the variability. The derived lower limits to T_B exceed the 10^12 K IC-limit by up to 3-4 orders of magnitude. Assuming relativistic boosting, we obtain robust and self-consistent lower limits of delta >= 5-33, in good agreement with delta_VLBI obtained from VLBI studies and the IC-Doppler factors delta_IC > 14-16 obtained from the INTEGRAL data. Since a strong contribution from ISS can be excluded and a simultaneous IC catastrophe was not observed, we conclude that relativistic Doppler boosting naturally explains the apparent violation of the theoretical limits within standard synchrotron-self-Compton (SSC) jet models of AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا