ترغب بنشر مسار تعليمي؟ اضغط هنا

With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar System planets. To investigate the atmospheres of these newly identified brown dwarfs, we h ave conducted a pilot study monitoring an initial sample of three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0h to 4.5h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ~2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years later did not note any variability to a 3% upper limit. With an effective temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published to-date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8% and 20.0%, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.
We present narrow-band photometric measurements of the exoplanet GJ 1214b using the 10.4 m Gran Telescopio Canarias (GTC) and the OSIRIS instrument. Using tuneable filters we observed a total of five transits, three of which were observed at two wave lengths nearly simultaneously, producing a total of eight individual light curves, six of these probed the possible existence of a methane absorption feature in the 8770 - 8850 {AA} region at high resolution. We detect no increase in the planet-to-star radius ratio across the methane feature with a change in radius ratio of $Delta$R = -0.0007 $pm$ 0.0017 corresponding to a scale height (H) change of -0.5 $pm$ 1.2 H across the methane feature, assuming a hydrogen dominated atmosphere. We find a variety of water and cloudy atmospheric models fit the data well, but find that cloud-free models provide poor fits. These observations support a flat transmission spectrum resulting from the presence of a high-altitude haze or a water-rich atmosphere, in agreement with previous studies. In this study the observations are predominantly limited by the photometric quality and the limited number of data points (resulting from a long observing cadence), which make the determination of the systematic noise challenging. With tuneable filters capable of high resolution measurements (R ~ 600 - 750) of narrow absorption features, the interpretation of our results are also limited by the absence of high resolution methane models below 1 $mu$m.
The Gamma ray Burst Monitor (GBM) on board Fermi Gamma-ray Space Telescope has been providing continuous data to the astronomical community since 2008 August 12. We will present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. Although the occultation technique is in principle quite simple, in practice there are many complications including the dynamic instrument response, source confusion, and scattering in the Earths atmosphere, which will be described. We detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky monitors below 100 keV and is the only all-sky monitor above 100 keV. In our fourth year of monitoring, we have already increased the number of transient sources detected and expect several of the weaker persistent sources to cross the detection threshold. I will briefly discuss these new sources and what to expect from our five year occultation catalog.
We present recent contemporaneous X-ray and optical observations of the Be/X-ray binary system A,0535+26 with the textit{Fermi}/Gamma-ray Burst Monitor (GBM) and several ground-based observatories. These new observations are put into the context of t he rich historical data (since $sim$1978) and discussed in terms of the neutron star Be-disk interaction. The Be circumstellar disk was exceptionally large just before the 2009 December giant outburst, which may explain the origin of the unusual recent X-ray activity of this source. We found a peculiar evolution of the pulse profile during this giant outburst, with the two main components evolving in opposite ways with energy. A hard 30-70 mHz X-ray QPO was detected with GBM during this 2009 December giant outburst. It becomes stronger with increasing energy and disappears at energies below 25,keV. In the long-term a strong optical/X-ray correlation was found for this system, however in the medium-term the H$_alpha$ EW and the V-band brightness showed an anti-correlation after $sim$2002 Agust. Each giant X-ray outburst occurred during a decline phase of the optical brightness, while the H$_alpha$ showed a strong emission. In late 2010 and before the 2011 February outburst, rapid V/R variations are observed in the strength of the two peaks of the H$_alpha$ line. These had a period of $sim$,25 days and we suggest the presence of a global one-armed oscillation to explain this scenario. A general pattern might be inferred, where the disk becomes weaker and shows V/R variability beginning $sim$,6 months following a giant outburst.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction $gamma pto ppi^0$ for photon energies between 0.85 and 2.50 GeV. The $pi^0$ mesons are observed in their dominant neutral decay mode: $pi^0togammagamma$. For the first time, the differential cross sections cover the very forward region, $theta_{rm c.m.}<60^circ$. A partial-wave analysis of these data within the Bonn-Gatchina framework observes the high-mass resonances $G_{17}$(2190), $D_{13}$(2080), and $D_{15}$(2070).
The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma ray telescopes. Although small -scale variations in the nebula are well-known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in August 2008, a ~ 7% (70 mcrab) decline has been observed in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline is independently confirmed with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the INTErnational Gamma-Ray Astrophysics Laboratory Imager on Board INTEGRAL (IBIS). A similar decline is also observed in the ~3 - 15 keV data from the RXTE/PCA and INTEGRAL Joint European Monitor (JEM-X) and in the 50 - 100 keV band with GBM and INTEGRAL/IBIS. Observations from 100 to 500 keV with GBM suggest that the decline may be larger at higher energies. The pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a ~3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in April 2007. As of August 2010, the current flux has declined below the 2007 minimum.
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond prompt ly to time-critical targets of opportunity. It is optimized for submillisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultradense matter, strongly curved spacetimes, and intense magnetic fields. AXTARs main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2-50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of supermodules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study.
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using t he change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermis solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا