ترغب بنشر مسار تعليمي؟ اضغط هنا

We have measured 16O(p,d) reaction using 198-, 295- and 392-MeV proton beams to search for a direct evidence on the effect of the tensor interactions in light nucleus. Differential cross sections of the one-neutron transfer reactions populating the g round states and several low-lying excited states in 15O were measured. Comparing the ratios of the cross sections for each excited state to the one for the ground state over a wide range of momentum transfer, we found a marked enhancement for the positive-parity state(s). The observation indicates large components of high-momentum neutrons in the initial ground-state configurations, due possibly to the tensor interactions.
75 - I. Poltoratska 2012
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excita tion. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.
76 - A. Tamii 2011
A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا