ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that the X-ray line flux of the Mn Kalpha line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two 3D explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two white dwarfs. Both models are based on solar metallicity zero-age main sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesises 3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kalpha line flux of the delayed-detonation model exceeds that of the merger model by a factor of 4.5. Since in both models the 5.9 keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. For the delayed-detonation scenario, a line detection is feasible with Chandra up to 3 Mpc for an exposure time of 10^6 s. We find that it should be possible with currently existing X-ray instruments (with exposure times 5x10^5 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of 5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (6.4 Mpc) and SN 2014J (3.5 Mpc).
118 - A. Summa , A. Ulyanov , M. Kromer 2013
Besides the fact that the gamma-ray emission due to radioactive decays is responsible for powering the light curves of Type Ia supernovae (SNe Ia), gamma rays themselves are of particular interest as a diagnostic tool because they provide a direct wa y to obtain deeper insights into the nucleosynthesis and the kinematics of these explosion events. Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we use three-dimensional explosion models and perform radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be rather different. The almost direct connection of the emission of gamma rays to fundamental physical processes occuring in SNe Ia permits additional constraints concerning several explosion model properties that are not easily accessible within other wavelength ranges. Proposed future MeV missions such as GRIPS will resolve all spectral details only for nearby SNe Ia, but hardness ratio and light curve measurements still allow for a distinction of the two different models at 10 and 16 Mpc for an exposure time of 10^6 s, respectively. The possibility to detect the strongest line features up to the Virgo distance will offer the opportunity to build up a first sample of SN Ia detections in the gamma-ray energy range and underlines the importance of future space observatories for MeV gamma rays.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا