ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrons in artificial lattices enable explorations of the impact of repulsive Coulomb interactions in a tunable system. We have trapped two-dimensional electrons belonging to a gallium arsenide quantum well in a nanofabricated lattice with honeycom b geometry. We probe the excitation spectrum in a magnetic field identifying novel collective modes that emerge from the Coulomb interaction in the artificial lattice as predicted by the Mott-Hubbard model. These observations allow us to determine the Hubbard gap and suggest the existence of a novel Coulomb-driven ground state. This approach offers new venues for the study of quantum phenomena in a controllable solid-state system.
At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potentia l with honeycomb symmetry can lead to the creation of isolated massless Dirac points with tunable Fermi velocity. We provide detailed theoretical estimates to realize such artificial graphene-like system and discuss an experimental realization in a modulation-doped GaAs quantum well. Ultra high-mobility electrons with linearly-dispersing bands might open new venues for the studies of Dirac-fermion physics in semiconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا