ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - T. Roell , A. Seifahrt (1 , 2 2012
Analyzing exoplanets detected by radial velocity or transit observations, we determine the multiplicity of exoplanet host stars in order to study the influence of a stellar companion on the properties of planet candidates. Matching the host stars of exoplanet candidates detected by radial velocity or transit observations with online multiplicity catalogs in addition to a literature search, 57 exoplanet host stars are identified having a stellar companion. The resulting multiplicity rate of at least 12 percent for exoplanet host stars is about four times smaller than the multiplicity of solar like stars in general. The mass and the number of planets in stellar multiple systems depend on the separation between their host star and its nearest stellar companion, e.g. the planetary mass decreases with an increasing stellar separation. We present an updated overview of exoplanet candidates in stellar multiple systems, including 15 new systems (compared to the latest summary from 2009).
New instrumental capabilities and the wealth of astrophysical information extractable from the near-infrared wavelength region have led to a growing interest in the field of high resolution spectroscopy at 1-5 mu. We aim to provide a library of obser ved high-resolution and high signal-to-noise-ratio near-infrared spectra of stars of various types throughout the Hertzsprung-Russell diagram. This is needed for the exploration of spectral features in this wavelength range and for comparison of reference targets with observations and models. High quality spectra were obtained using the CRIRES near-infrared spectrograph at ESOs VLT covering the range from 0.97 to 5.3 mu at high spectral resolution. Accurate wavelength calibration and correction for of telluric lines were performed by fitting synthetic transmission spectra for the Earths atmosphere to each spectrum individually. We describe the observational strategy and the current status and content of the library which includes 13 objects. The first examples of finally reduced spectra are presented. This publication will serve as a reference paper to introduce the library to the community and explore the extensive amount of material.
Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral reg ion from 986 nm to 1077 nm (Wing-Ford band). To identify these lines in CRIRES spectra of the magnetically inactive, slowly rotating, M5.5 dwarf GJ1002, we calculated model spectra for the selected spectral region with theoretical FeH line data. In general this line list agrees with the observed data, but several individual lines differ significantly in position or in line strength. After identification of as many as possible FeH lines, we correct the line data for position and line strength to provide an accurate atlas of FeH absorption lines for use in high precision spectroscopy of low mass stars. For all lines, we use a Voigt function to obtain their positions and equivalent widths. Identification with theoretical lines is done by hand. For confirmation of the identified lines, we use statistical methods, cross- correlation techniques, and line intensities. Eventually, we were able to identify FeH lines from the (0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), and (4, 3) vibrational bands in the observed spectra and correct the positions of the lines if necessary. The deviations between theoretical and observed positions follow a normal distribution approximately around zero. In order to empirically correct the line strength, we determined Teff, instrumental broadening (rotational broadening) and a van der Waals enhancement factor for FeH lines in GJ1002. We also give scaling factors for the Einstein A values to correct the line strengths. With the identified lines, we derived rotational temperatures from line intensities for GJ1002. ... .
In our ongoing search for close and faint companions around T Tauri stars, we found a very faint (Ks=14.9mag, Ks_0=14.4mag) object, just ~2.67 northwest of the Chamaeleon star-forming region member CT Cha corresponding to a projected separation of ~4 40AU at 165+/-30 pc. We show that CT Cha A and this faint object form a common proper motion pair from data of the VLT Adaptive Optics (AO) instrument NACO taken in February 2006 and March 2007 and that the companion is by >=4 sigma significance not a stationary background object. Our AO integral field spectroscopy with SINFONI in J, and H+K bands yields a temperature of 2600+/-250K for the companion and an optical extinction of A_V=5.2+/-0.8mag, when compared to spectra calculated from Drift-Phoenix model atmospheres. We demonstrate the validity of the model fits by comparison to several other well-known young sub-stellar objects. Relative flux calibration of the bands was achieved using photometry from the NACO imaging data. We conclude that the CT Cha companion is a very low-mass member of Chamaeleon and very likely a physical companion to CT Cha, as the probability for a by chance alignment is <=0.01. Due to a prominent Pa-Beta emission in the J-band, accretion is probably still ongoing onto the CT Cha companion. From temperature and luminosity (log(Lbol/Lsun)= -2.68+/-0.21), we derive a radius of R=2.20+0.81-0.60 R_Jup. We find a consistent mass of M=17+/-6 MJup for the CT Cha companion from both its luminosity and temperature when placed on evolutionary tracks. Hence, the CT Cha companion is most likely a wide brown dwarf companion or possibly even a planetary mass object.
54 - A. Seifahrt 2008
We present a refined orbital solution for the components A, B, and C of the nearby late-M type multiple system LHS 1070. By combining astrometric datapoints from NACO/VLT, CIAO/SUBARU, and PUEO/CFHT, as well as a radial velocity measurement from the newly commissioned near infrared high-resolution spectrograph CRIRES/VLT, we achieve a very precise orbital solution for the B and C components and a first realistic constraint on the much longer orbit of the A-BC system. Both orbits appear to be co-planar. Masses for the B and C components calculated from the new orbital solution (M_(B+C) = 0.157 +/- 0.009 M_sun) are in excellent agreement with theoretical models, but do not match empirical mass-luminosity tracks. The preliminary orbit of the A-BC system reveals no mass excess for the A component, giving no indication for a previously proposed fourth (D) component in LHS 1070.
We show high resolution spectra of the eclipsing brown dwarf binary 2MASSJ05352184-0546085 taken at the two opposite radial velocity maxima. Comparisons of the TiO bands to model and template spectra are fully consistent with the temperatures previou sly derived for this system. In particular, the reversal of temperatures with mass - in which the higher-mass primary is cooler than its companion - is confirmed. We measure the projected rotation velocities of the compononents; the primary is rotating at least twice as rapidly as the secondary. At the two radial velocity maxima, Halpha emission lines of both components stick out to either sides of the Halpha central wavelength, which is dominated by nebula emission. This enables us to model the individual Halpha lines of the primary and the secondary. We find that the Halpha emission from the primary is at least 7 times stronger than the emission from the secondary. We conclude that the temperature reversal is very likely due to strong magnetic fields inhibiting convection on the primary.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper-motion companions of stars via multi-epoch imaging. Their companions hip is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co-moving (13 sigma) stellar companion ~17.8 arcsec (350 AU in projected separation) north of the nearby star HD141272 (21 pc). With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3+-0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a 0.26+-0.07 Msol dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre-main sequence status, since the system is consistent with the ZAMS of the Pleiades.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا