ترغب بنشر مسار تعليمي؟ اضغط هنا

Background: The B(E2) transition strength to the 2+_2 state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 2+_1 state from lifetime measurements with the Doppler-shift attenuation method (DSAM) using the (n,ngamma ) reaction [E. Elhami et al., Phys. Rev. C 75, 011301(R) (2007)]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: The goal is an independent determination of the ratio of B(E2) strengths for the transitions to the 2+_(1,2) states of 94Zr with inelastic electron scattering. Method: The relative population of the 2+_(1,2) states in (e,e) reactions was measured at the SDALINAC in a momentum transfer range q = 0.17 - 0.51 fm^(-1) and analyzed in plane-wave Born approximation with the method described in A. Scheikh Obeid et al., Phys. Rev. C 87, 014337 (2013). Results: The extracted B(E2) strength ratio of 0.789(43) between the excitation of the 2+_1 and 2+_2 states of 94Zr is consistent with but more precise than the latest (n,ngamma) experiment. Using the B(E2) transition strength to the first excited state from the literature a value of 3.9(9) W.u. is deduced for the B(E2; 2+_2 -> 0+_1) transition. Conclusions: The electron scattering result independently confirms the latest interpretation of the different (n,ngamma) results for the transition to the 2+_2 state in 94Zr.
Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized by a sign change between dominant proton and neutron valence-shell components with respect to the fully symmetric 2+ state. The sign can be measured by a decomposition of pr oton and neutron transition radii with a combination of inelastic electron and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106, 062501 (2011)]. For the case of 92Zr, a difference could be experimentally established for the neutron components, while about equal proton transition radii were indicated by the data. Method: Differential cross sections for the excitation of one-phonon 2+ and 3- states in 92Zr have been measured with the (e,e) reaction at the S-DALINAC in a momentum transfer range q = 0.3-0.6 fm^(-1). Results: Transition strengths B(E2;2+_1 -> 0+_1) = 6.18(23), B(E2; 2+_2 -> 0+_1) = 3.31(10) and B(E3; 3-_1 -> 0+_1) = 18.4(11) Weisskopf units are determined from a comparison of the experimental cross sections to quasiparticle-phonon model (QPM) calculations. It is shown that a model-independent plane wave Born approximation (PWBA) analysis can fix the ratio of B(E2) transition strengths to the 2+_(1,2) states with a precision of about 1%. The method furthermore allows to extract their proton transition radii difference. With the present data -0.12(51) fm is obtained. Conclusions: Electron scattering at low momentum transfers can provide information on transition radii differences of one-phonon 2+ states even in heavy nuclei. Proton transition radii for the 2+_(1,2) states in 92Zr are found to be identical within uncertainties. The g.s. transition probability for the mixed-symmetry state can be determined with high precision limited only by the available experimental information on the B(E2; 2+_1 -> 0+_1) value.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا