ترغب بنشر مسار تعليمي؟ اضغط هنا

325 - V. Ryzhii , A. Satou , T. Otsuji 2014
We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. The electron heating is primarily associated with the intraband absorption (the Drude absorption). We calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GL detectors (GLDs) with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A$_3$B$_5$ materials, in particular THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials).
176 - A. Satou , Y. Koseki , V. Ryzhii 2014
Coupling of plasmons in graphene at terahert (THz) frequencies with surface plasmons in a heavily-doped substrate is studied theoretically. We reveal that a huge scattering rate may completely damp out the plasmons, so that proper choices of material and geometrical parameters are essential to suppress the coupling effect and to obtain the minimum damping rate in graphene. Even with the doping concentration 10^{19} - 10^{20} cm^{-3} and the thickness of the dielectric layer between graphene and the substrate 100 nm, which are typical values in real graphene samples with a heavily-doped substrate, the increase in the damping rate is not negligible in comparison with the acoustic-phonon-limited damping rate. Dependence of the damping rate on wavenumber, thicknesses of graphene-to-substrate and gate-to-graphene separation, substrate doping concentration, and dielectric constants of surrounding materials are investigated. It is shown that the damping rate can be much reduced by the gate screening, which suppresses the field spread of the graphene plasmons into the substrate.
228 - A. Satou , F. T. Vasko , T. Otsuji 2013
Mechanism of transient population inversion in graphene with multi-splitted (interdigitated) top-gate and grounded back gate is suggested and examined for the mid-infrared (mid-IR) spectral region. Efficient stimulated emission after fast lateral spr eading of carriers due to drift-diffusion processes is found for the case of a slow electron-hole recombination in the passive region. We show that with the large gate-to-graphene distance the drift process always precedes the diffusion process, due to the ineffective screening of the inplane electric field by the gates. Conditions for lasing with a gain above 100 cm$^{-1}$ are found for cases of single- and multi-layer graphene placed in the waveguide formed by the top and back gates. Both the waveguide losses and temperature effects are analyzed.
83 - V. Ryzhii , A. Satou , T. Otsuji 2013
We study the dynamic effects in the double graphene-layer (GL) structures with the resonant-tunneling (RT) and the negative differential inter-GL conductivity. Using the developed model, which accounts for the excitation of self-consistent oscillatio ns of the electron and hole densities and the ac electric field between GLs (plasma oscillations), we calculate the admittance of the double-GL RT structures as a function of the signal frequency and applied voltages, and the spectrum and increment/decrement of plasma oscillations. Our results show that the electron-hole plasma in the double-GL RT structures with realistic parameters is stable with respect to the self-excitation of plasma oscillations and aperiodic perturbations. The stability of the electron-hole plasma at the bias voltages corresponding to the inter-GL RT and strong nonlinearity of the RT current-voltage characteristics enable using the double-GL RT structures for detection of teraherz (THz) radiation. The excitation of plasma oscillations by the incoming THz radiation can result in a sharp resonant dependence of detector responsivity on radiation frequency and the bias voltage. Due to a strong nonlinearity of the current-voltage characteristics of the double-GL structures at RT and the resonant excitation of plasma oscillations, the maximum responsivity, $R_V^{max}$, can markedly exceed the values $(10^4 - 10^5)$~V/W at room temperature.
220 - A. Satou , V. Ryzhii , Y. Kurita 2012
We theoretically study the population inversion and negative dynamic conductivity in intrinsic graphene in the terahertz (THz) frequency range upon pulse photoexcitation with near-/mid-infrared wavelength. The threshold pulse energy required for the population inversion and negative dynamic conductivity can be orders-of-magnitude lower when the pulse photon energy is lower, due to the inverse proportionality of the photoexcited carrier concentration to the pulse photon energy and to the weaker carrier heating. We also investigate the dependence of the dynamic conductivity on the momentum relaxation time. The negative dynamic conductivity takes place either in high- or low-quality graphene, where the Drude absorption by carriers in the THz frequency is weak.
381 - V. Ryzhii , M. Ryzhii , A. Satou 2008
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a s energy gap in different sections of the channel on the bias back-gate and top-gate voltages. Using this model, we calculate the dc and ac source-drain currents and the transconductance of GBL-FETs with both ballistic and collision dominated electron transport as functions of structural parameters, the bias back-gate and top-gate voltages, and the signal frequency. It is shown that there are two threshold voltages, $V_{th,1}$ and $V_{th,2}$, so that the dc current versus the top-gate voltage relation markedly changes depending on whether the section of the channel beneath the top gate (gated section) is filled with electrons, depleted, or filled with holes. The electron scattering leads to a decrease in the dc and ac currents and transconductances, whereas it weakly affects the threshold frequency. As demonstrated, the transient recharging of the gated section by holes can pronouncedly influence the ac transconductance resulting in its nonmonotonic frequency dependence with a maximum at fairly high frequencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا