ترغب بنشر مسار تعليمي؟ اضغط هنا

Among the possibly most intriguing aspects of quantum entanglement is that it comes in free and bound instances. Bound entangled states require entangled states in preparation but, once realized, no free entanglement and therefore no pure maximally e ntangled pairs can be regained. Their existence hence certifies an intrinsic irreversibility of entanglement in nature and suggests a connection with thermodynamics. In this work, we present a first experimental unconditional preparation and detection of a bound entangled state of light. We consider continuous-variable entanglement, use convex optimization to identify regimes rendering its bound character well certifiable, and realize an experiment that continuously produced a distributed bound entangled state with an extraordinary and unprecedented significance of more than ten standard deviations away from both separability and distillability. Our results show that the approach chosen allows for the efficient and precise preparation of multimode entangled states of light with various applications in quantum information, quantum state engineering and high precision metrology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا