ترغب بنشر مسار تعليمي؟ اضغط هنا

We study pre-equilibrium giant dipole resonance excitation and fusion in the neutron-rich system $^{132}$Sn+$^{48}$Ca at energies near the Coulomb barrier, and we compare photon yields and total fusion cross sections to those of the stable system $^{ 124}$Sn+$^{40}$Ca. The dynamic microscopic calculations are carried out on a three-dimensional lattice using both the Time-Dependent Hartree-Fock method and the Density Constrained TDHF method. We demonstrate that the peak of the GDR excitation spectrum occurs at a substantially lower energy than expected for an equilibrated system, thus reflecting the very large prolate elongation of the dinuclear complex during the early stages of fusion. Our theoretical fusion cross-sections for both systems agree reasonably well with recent data measured at HRIBF.
We study the equilibration and relaxation processes within the time-dependent Hartree-Fock approach using the Wigner distribution function. On the technical side we present a geometrically unrestricted framework which allows us to calculate the full six-dimensional Wigner distribution function. With the removal of geometrical constraints, we are now able to extend our previous phase-space analysis of heavy-ion collisions in the reaction plane to unrestricted mean-field simulations of nuclear matter on a three-dimensional Cartesian lattice. From the physical point of view we provide a quantitative analysis on the stopping power in TDHF. This is linked to the effect of transparency. For the medium-heavy $^{40}$Ca+$^{40}$Ca system we examine the impact of different parametrizations of the Skyrme force, energy-dependence, and the significance of extra time-odd terms in the Skyrme functional. For the first time, transparency in TDHF is observed for a heavy system, $^{24}$Mg+$^{208}$Pb.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا