ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The two nuclei of the starburst galaxy Arp220 contain multiple compact radio sources previously identified as radio supernovae or supernova remnants. Aims. In order to search for an embedded radio AGN, or other possible exotic objects, we ha ve carried out a program of VLBI monitoring at 6 cm over three epochs each separated by four months. Methods. Combining the new data with existing data at 6 cm and 18 cm (spanning 4 and 12 years respectively) we are able to characterise source flux density variability on a range of time-scales. Additionally we analyse the variability of sources in shape and position. Results. We detect rapid (< 4 months) variability in three sources (W7, W26 and W29). These sources show possible superluminal motion (> 4c) of jet-like features near rapidly varying almost stationary components. These enigmatic sources might be associated with an AGN or a highly beamed microquasar (i.e. microblazar). Other hypotheses include that the apparent variability is intrinsic and is produced by neutron star powered central components within a supernova remnant, by a sequence of several supernovae within super star clusters, or is extrinsic and is produced by Galactic interstellar scintillation of very compact non-varying objects. Conclusions. A microquasar/microblazar origin seems to be the best explanation for the nature of the variable sources in Arp220.
We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state j et to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.
The radio emitting X-ray binary GRS 1915+105 shows a wide variety of X-ray and radio states. We present a decade of monitoring observations, with the RXTE-ASM and the Ryle Telescope, in conjunction with high-resolution radio observations using MERLIN and the VLBA. Linear polarisation at 1.4 and 1.6 GHz has been spatially resolved in the radio jets, on a scale of ~150 mas and at flux densities of a few mJy. Depolarisation of the core occurs during radio flaring, associated with the ejection of relativistic knots of emission. We have identified the ejection at four epochs of X-ray flaring. Assuming no deceleration, proper motions of 16.5 to 27 mas per day have been observed, supporting the hypothesis of a varying angle to the line-of-sight per ejection, perhaps in a precessing jet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا