ترغب بنشر مسار تعليمي؟ اضغط هنا

The rare kaon decays $Ktopiell^+ell^-$ and $Ktopi ubar{ u}$ are flavor changing neutral current (FCNC) processes and hence promising channels with which to probe the limits of the standard model and to look for signs of new physics. In this paper we demonstrate the feasibility of lattice calculations of $Ktopiell^+ell^-$ decay amplitudes for which long-distance contributions are very significant. We show that the dominant finite-volume corrections (those decreasing as powers of the volume) are negligibly small and that, in the four-flavor theory, no new ultraviolet divergences appear as the electromagnetic current $J$ and the effective weak Hamiltonian $H_W$ approach each other. In addition, we demonstrate that one can remove the unphysical terms which grow exponentially with the range of the integration over the time separation between $J$ and $H_W$. We will now proceed to exploratory numerical studies with the aim of motivating further experimental measurements of these decays. Our work extends the earlier study by Isidori, Turchetti and Martinelli which focussed largely on the renormalization of ultraviolet divergences. In a companion paper we discuss the evaluation of the long-distance contributions to $Ktopi ubar{ u}$ decays; these contributions are expected to be at the level of a few percent for $K^+$ decays.
87 - A. Portelli , S. Durr , Z. Fodor 2010
At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $math rm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا