ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-mass objects embedded in isothermal protoplanetary discs are known to suffer rapid inward Type I migration. In non-isothermal discs, recent work has shown that a decreasing radial profile of the disc entropy can lead to a strong positive corotati on torque which can significantly slow down or reverse Type I migration in laminar viscous disc models. It is not clear however how this picture changes in turbulent disc models. The aim of this study is to examine the impact of turbulence on the torque experienced by a low-mass planet embedded in a non-isothermal protoplanetary disc. We particularly focus on the role of turbulence on the corotation torque whose amplitude depends on the efficiency of diffusion processes in the planets horseshoe region. We performed 2D numerical simulations using a grid-based hydrodynamical code in which turbulence is modelled as stochastic forcing. In order to provide estimations for the viscous and thermal diffusion coefficients as a function of the amplitude of turbulence, we first set up non-isothermal disc models for different values of the amplitude of the turbulent forcing. We then include a low-mass planet and determine the evolution of its running time-averaged torque. We show that in non-isothermal discs, the entropy-related corotation torque can indeed remain unsaturated in the presence of turbulence. For turbulence amplitudes that do not strongly affect the disc temperature profile, we find that the running time-averaged torque experienced by an embedded protoplanet is in fairly good agreement with laminar disc models with appropriate values for the thermal and viscous diffusion coefficients. In discs with turbulence driven by stochastic forcing, the corotation torque therefore behaves similarly as in laminar viscous discs and can be responsible for significantly slowing down or reversing Type I migration.
We investigate the evolution of a system of two super-Earths with masses < 4 Earth masses embedded in a turbulent protoplanetary disk. The aim is to examine whether or not resonant trapping can occur and be maintained in presence of turbulence and ho w this depends on the amplitude of the stochastic density fluctuations in the disk. We have performed 2D numerical simulations using a grid-based hydrodynamical code in which turbulence is modelled as stochastic forcing. We assume that the outermost planet is initially located just outside the position of the 3:2 mean motion resonance (MMR) with the inner one and we study the dependance of the resonance stability with the amplitude of the stochastic forcing. For systems of two equal-mass planets we find that in disk models with an effective viscous stress parameter {alpha} 10^{-3}, damping effects due to type I migration can counteract the effects of diffusion of the resonant angles, in such a way that the 3:2 MMR can possibly remain stable over the disk lifetime. For systems of super-Earths with mass ratio q=m_i/m_o < 1/2, where m_i (m_o) is the mass of the innermost (outermost) planet, the 3:2 MMR is broken in turbulent disks with effective viscous stresses 2x10^{-4}< {alpha}< 10^{-3} but the planets become locked in stronger p+1:p resonances, with p increasing as the value for {alpha} increases. For {alpha}> 2x10^{-3}, the evolution can eventually involve temporary capture in a 8:7 commensurability but no stable MMR is formed. Our results suggest that for values of the viscous stress parameter typical to those generated by MHD turbulence, MMRs between two super-Earths are likely to be disrupted by stochastic density fluctuations. For lower levels of turbulence however, as is the case in presence of a dead-zone, resonant trapping can be maintained in systems with moderate values of the planet mass ratio.
42 - J.-M. Hure 2009
We present the exact calculus of the gravitational potential and acceleration along the symmetry axis of a plane, homogeneous, polar cell as a function of mean radius a, radial extension e, and opening angle f. Accurate approximations are derived in the limit of high numerical resolution at the geometrical mean <a> of the inner and outer radii (a key-position in current FFT-based Poisson solvers). Our results are the full extension of the approximate formula given in the textbook of Binney & Tremaine to all resolutions. We also clarify definitely the question about the existence (or not) of self-forces in polar cells. We find that there is always a self-force at radius <a> except if the shape factor a.f/e reaches ~ 3.531, asymptotically. Such cells are therefore well suited to build a polar mesh for high resolution simulations of self-gravitating media in two dimensions. A by-product of this study is a newly discovered indefinite integral involving complete elliptic integral of the first kind over modulus.
We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous pair (a closed form expression) corresponding to a uniform disk, and a ``res idual pair. This residual component is converted into an infinite series of integrals over the radial extent of the disk. For a certain class of surface density distributions (like power laws of the radius), this series is fully analytical. The extraction of the homogeneous pair is equivalent to a convergence acceleration technique, in a matematical sense. In the case of power law distributions, the convergence rate of the residual series is shown to be cubic inside the source. As a consequence, very accurate potential values are obtained by low order truncation of the series. At zero order, relative errors on potential values do not exceed a few percent typically, and scale with the order N of truncation as 1/N**3. This method is superior to the classical multipole expansion whose very slow convergence is often critical for most practical applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا