ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit coupling in solids describes an interaction between an electrons spin, an internal quantum-mechanical degree of freedom, with its linear momentum, an external property. Spin-orbit interaction, due to its relativistic nature, is typically s mall in solids, and is often taken into account perturbatively. It has been recently realized, however, that materials with strong spin-orbit coupling can lead to novel states of matter such as topological insulators and superconductors. This exciting development might lead to a number of useful applications ranging from spintronics to quantum computing. In particular, theory predicts that narrow band gap semiconductors with strong spin-obit coupling are a suitable platform for the realization of Majorana zero-energy modes, predicted to obey exotic non-Abelian braiding statistics. The pursuit for realizing Majorana modes in condensed matter systems and investigating their exotic properties has been a subject of intensive experimental research recently. Here, we demonstrate the first realization of gate-defined wires where one-dimensional confinement is created using electrostatic potentials, on large area InAs two dimensional electron systems (2DESs). The electronic properties of the parent 2DES are fully characterized in the region that wires are formed. The strength of the spin-orbit interaction has been measured and tuned while the high mobility of the 2DES is maintained in the wire. We show that this scheme could provide new prospective solutions for scalable and complex wire networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا