ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a flexible branching process model for cell population dynamics in synchrony/time-series experiments used to study important cellular processes. Its formulation is constructive, based on an accounting of the unique cohorts in the populatio n as they arise and evolve over time, allowing it to be written in closed form. The model can attribute effects to subsets of the population, providing flexibility not available using the models historically applied to these populations. It provides a tool for in silico synchronization of the population and can be used to deconvolve population-level experimental measurements, such as temporal expression profiles. It also allows for the direct comparison of assay measurements made from multiple experiments. The model can be fit either to budding index or DNA content measurements, or both, and is easily adaptable to new forms of data. The ability to use DNA content data makes the model applicable to almost any organism. We describe the model and illustrate its utility and flexibility in a study of cell cycle progression in the yeast Saccharomyces cerevisiae.
138 - A. Orlando , R.W Aikin , M. Amiri 2010
BICEP2/Keck and SPIDER are cosmic microwave background (CMB) polarimeters targeting the B-mode polarization induced by primordial gravitational waves from inflation. They will be using planar arrays of polarization sensitive antenna-coupled TES bolom eters, operating at frequencies between 90 GHz and 220 GHz. At 150 GHz each array consists of 64 polarimeters and four of these arrays are assembled together to make a focal plane, for a total of 256 dual-polarization elements (512 TES sensors). The detector arrays are integrated with a time-domain SQUID multiplexer developed at NIST and read out using the multi-channels electronics (MCE) developed at the University of British Columbia. Following our progress in improving detector parameters uniformity across the arrays and fabrication yield, our main effort has focused on improving detector arrays optical and noise performances, in order to produce science grade focal planes achieving target sensitivities. We report on changes in detector design implemented to optimize such performances and following focal plane arrays characterization. BICEP2 has deployed a first 150 GHz science grade focal plane to the South Pole in December 2009.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا