ترغب بنشر مسار تعليمي؟ اضغط هنا

Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we demonstrate the existence of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system.
Graphene-metal contact resistance is governed by both intrinsic and extrinsic factors. Intrinsically, both the density of states bottleneck near the Dirac point and carrier reflection at the graphene-metal interface lead to a high contact resistance. Moreover, graphene exhibits insulating behavior for out-of-the-plane conduction. Extrinsically, surface contamination introduced by photoresist residue or different adsorbed species during standard lithography processing alters graphenes intrinsic properties by uncontrolled doping and increased scattering which results in high and inconsistent contact resistance. Here we demonstrate a femto-second laser assisted direct patterning of graphene microstructures that enables us to study both intrinsic and extrinsic effects on the graphene-metal interface. We show that a clean graphene-metal interface is not sufficient to obtain contact resistance approaching the intrinsic limit set by the quantum resistance. We also demonstrated that unlike CVD graphene, edge state conduction (or end-contact) is not spontaneously formed by metal deposition in case of graphene grown on SiC(0001). We conclude that for epitaxial graphene, intentional end-contact formation is necessary to obtain contact resistance near the quantum contact resistance limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا