ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrated experimentally canard induced mixed mode oscillations (MMO) in an excitable glow discharge plasma, and the results are validated through numerical solution of the FitzHugh Nagumo (FHN) model. When glow discharge plasma is perturbed by applying a magnetic field, it shows mixed mode oscillatory activity, i.e., quasiperiodic small oscillations interposed with large bounded limit cycles oscillations. The initial quasiperiodic oscillations were observed to change into large amplitude limit cycle oscillations with magnetic field, and the number of these oscillation increases with increase in the magnetic field. Fourier analysis of both numerical and experimental results show that the origin of these oscillations are canard-induced phenomena, which occurs near the threshold of the control parameter. Further, the phase space plots also confirm that the oscillations are basically canard-induced MMOs.
In this paper non-linear dynamics of a periodically forced excitable glow discharge plasma has been studied. The experiments were performed in glow discharge plasma where excitability was achieved for suitable discharge voltage and gas pressure. The plasma was first perturbed by a sub-threshold sawtooth periodic signal, and we obtained small sub-threshold oscillations. These oscillations showed resonance when the frequency of the perturbation was around the characteristic frequency the plasma, and hence may be useful to estimate characteristic of an excitable system. On the other hand, when the perturbation was supra-threshold, system showed frequency entrainments. We obtained harmonic frequency entrainments for perturbation frequency greater than the characteristic frequency of the system and for lesser than the characteristic frequency, system showed only excitable behaviour.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا