ترغب بنشر مسار تعليمي؟ اضغط هنا

We present deep Hubble Space Telescope (HST) NICMOS 2 F160W band observations of the central 56*57 (14pc*14.25pc) region around R136 in the starburst cluster 30 Dor (NGC 2070) located in the Large Magellanic Cloud. Our aim is to derive the stellar In itial Mass Function (IMF) down to ~1 Msun in order to test whether the IMF in a massive metal-poor cluster is similar to that observed in nearby young clusters and the field in our Galaxy. We estimate the mean age of the cluster to be 3 Myr by combining our F160W photometry with previously obtained HST WFPC2 optical F555W and F814W band photometry and comparing the stellar locus in the color-magnitude diagram with main sequence and pre-main sequence isochrones. The color-magnitude diagrams show the presence of differential extinction and possibly an age spread of a few megayears. We convert the magnitudes into masses adopting both a single mean age of 3 Myr isochrone and a constant star formation history from 2 to 4 Myr. We derive the IMF after correcting for incompleteness due to crowding. The faintest stars detected have a mass of 0.5 Msun and the data are more than 50% complete outside a radius of 5 pc down to a mass limit of 1.1 Msun for 3 Myr old objects. We find an IMF of dN/dlog(M) M^(-1.20+-0.2) over the mass range 1.1--20 Msun only slightly shallower than a Salpeter IMF. In particular, we find no strong evidence for a flattening of the IMF down to 1.1 Msun at a distance of 5 pc from the center, in contrast to a flattening at 2 Msun at a radius of 2 pc, reported in a previous optical HST study. We examine several possible reasons for the different results. If the IMF determined here applies to the whole cluster, the cluster would be massive enough to remain bound and evolve into a relatively low-mass globular cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا