ترغب بنشر مسار تعليمي؟ اضغط هنا

(Shortened) Luminous blue variable stars (LBVs) form dust as a result of episodic, violent mass loss. To investigate their contribution as dust producers in the Magellanic Clouds, we analyse 31 LBVs from a recent census. We built a maximally complete multi-wavelength dataset of these sources from archival data from near-IR to millimetre wavelengths. We review the LBV classification on the basis of the IR SED. To derive characteristic dust parameters, we fitted the photometry resulting from a stacking analysis. For comparison we also stacked the images of low- and intermediate-mass evolved stars in the LMC. We find four classes of sources: 1) LBVs showing mid-IR dust emission plus near-IR free-free emission from an ionised stellar wind (Class 1a) or only mid-IR dust emission (Class 1b); 2) LBVs with a near-IR excess due to free-free emission only (Class 2); 3) objects with an sgB[e] classification; and 4) objects with no detected stellar winds and no circumstellar matter in their SEDs. From the stacking analysis of the 18 Class 1 and 2 objects in the LMC, we derived an integrated dust mass of $0.11^{+0.06}_{-0.03} M_odot$. This is two orders of magnitude larger than the value inferred from stacking 1342 extreme-AGB stars. The dust mass of individual LBVs does not correlate with the stellar parameters, possibly suggesting that the dust production mechanism is independent of the initial stellar mass or that the stars have different evolutionary histories. The total dust yield from LBVs over the age of the LMC is $sim 10^4-10^5 M_odot$. LBVs are potentially the second most important source of dust in normal galaxies. The role of dust destruction in LBV nebulae by a possible subsequent SN blast wave has yet to be determined. Recent theoretical developments in the field of dust processing by SN shocks highlight the potential survival of dust from the pre-existing circumstellar nebula.
Eta Car is one of the most luminous and massive stars in our Galaxy and is the brightest mid-infrared (mid-IR) source in the sky, outside our solar system. Since the late 1990s the central source has dramatically brightened at ultraviolet and optical wavelengths. This might be explained by a decrease in circumstellar dust extinction. We aim to establish the mid-IR flux evolution and further our understanding of the stars ultraviolet and optical brightening. Mid-IR images from $8-20~mu$m were obtained in 2018 with VISIR at the Very Large Telescope. Archival data from 2003 and 2005 are retrieved from the ESO Science Archive Facility and historical records are collected from publications. We present the highest angular resolution mid-IR images of $eta$ Car to date at the corresponding wavelengths ($geq 0.22$). We reconstruct the mid-IR evolution of the spectral energy distribution of the spatially integrated Homunculus nebula from 1968 to 2018 and find no long-term changes. Eta Cars bolometric luminosity has been stable over the past five decades. We do not observe a long-term decrease in the mid-IR flux densities that could be associated with the brightening at ultraviolet and optical wavelengths, but circumstellar dust must be declining in our line-of-sight only. Short-term flux variations within about 25% of the mean levels could be present.
Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution $lambda/Deltalambda sim 14 0000$. In 900s on-source, we detect the pure rotational Raman lines of $^{16}$O$_2$, $^{14}$N$_2$, and $^{14}$N$^{15}$N (tentatively) up to rotational quantum numbers $J$ of 27, 24, and 9, respectively. We detect the $^{16}$O$_2$ fine-structure lines induced by the interaction of the electronic spin textbf{S} and end-over-end rotational angular momentum textbf{N} in the electronic ground state of this molecule up to $N=9$. The same spectrum also reveals the $ u_{1leftarrow0}$ rotational-vibrational Q-branch for $^{16}$O$_2$ and $^{14}$N$_2$. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs.
Aims. The X-shooter archive of several thousand telluric star spectra was skimmed for Be and Be-shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late type Be stars, and the e xtension of the Be phenomenon into early A stars. Methods. An adapted version of the BCD method is used, utilizing the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but due to uncertainties in determining the photospheric contribution are useful only in a subsample of Be stars for determining the pure emission contribution. Results. A total of 78 Be stars, mostly late type ones, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. The general trend of late type Be stars having more tenuous disks and being less variable than early type ones is confirmed. The relatively large number (48) of relatively bright (V > 8.5) additional Be stars casts some doubt on the statistics of late type Be stars; they are more common than currently thought: The Be/B star fraction may not strongly depend on spectral subtype.
116 - A. Mehner , W. Steffen , J.H. Groh 2016
Aims. The structural inhomogeneities and kinematics of massive star nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of eta Car outside its famous Homunculus nebula. Methods. We ca rried out the first large-scale integral field unit observations of eta Car in the optical, covering a field of view of 1x1 centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of eta Cars outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results. The largest coherent structure in eta Cars outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions. The SHAPE modeling of the MUSE observations indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell just outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for eta Car-like eruptions.
Not all stars exhibiting the optical spectral characteristics of B[e] stars share the same evolutionary stage. The Galactic B[e] star MWC 137 is a prime example of an object with uncertain classification, with previous work suggesting pre- and post-m ain sequence classification. Our goal is to settle this debate and provide reliable evolutionary classification. Integral field spectrograph observations with VLT MUSE of the cluster SH 2-266 are used to analyze the nature of MWC 137. A collimated outflow is discovered that is geometrically centered on MWC 137. The central position of MWC 137 in the cluster SH 2-266 within the larger nebula suggests strongly that it is a member of this cluster and that it is both at the origin of the nebula and the newly discovered jet. Comparison of the color-magnitude diagram of the brightest cluster stars with stellar evolutionary models results in a distance of about 5.2$pm$1.4 kpc. We estimate that the cluster is at least 3 Myr old. The jet extends over 66 (1.7 pc) projected on the plane of the sky, shows several knots, and projected velocities of up to $pm$450 km s$^{-1}$. From the Balmer emission line decrement of the diffuse intracluster nebulosity we determine E(B-V)=1.4 mag for the inner 1 cluster region. The spectral energy distribution of the brightest cluster stars yield a slightly lower extinction of E(B-V)~1.2 mag. The extinction towards MWC 137 is estimated to be E(B-V)~1.8 mag (A$_V$~5.6 mag). Our analysis of the optical and near-infrared color-magnitude and color-color diagrams suggests a post-main sequence stage of MWC 137. The existence of a jet in this object implies the presence of an accretion disk.
Aims. Every 5.5 years eta Cars light curve and spectrum change remarkably across all observed wavelength bands. We compare the recent spectroscopic event in mid-2014 to the events in 2003 and 2009 and investigate long-term trends. Methods. Eta Car wa s observed with HST STIS, VLT UVES, and CTIO 1.5m CHIRON for a period of more than two years in 2012-2015. Archival observations with these instruments cover three orbital cycles. Results. Important spectroscopic diagnostics show significant changes in 2014 compared to previous events. While the timing of the first HeII 4686 flash was remarkably similar to previous events, the HeII equivalent widths were slightly larger and the line flux increased compared to 2003. The second HeII peak occurred at about the same phase as in 2009, but was stronger. The HeI line flux grew in 2009-2014 compared to 1998-2003. On the other hand, Halpha and FeII lines show the smallest emission strengths ever observed. Conclusions. The basic character of the spectroscopic events has changed in the past 2-3 cycles; ionizing UV radiation dramatically weakened during each pre-2014 event but not in 2014. The strengthening of HeI emission and the weakening of the lower-excitation wind features in our direct line of sight implies a substantial change in the physical parameters of the emitting regions. The polar spectrum at FOS4 shows less changes in the broad wind emission lines, which may be explained by the latitude-dependent wind structure of eta Car. The quick and strong recovery of the HeII emission in 2014 supports a scenario, in which the wind-wind shock may not have completely collapsed as was proposed for previous events. All this may be the consequence of just one elementary change, namely a strong decrease in the primarys mass-loss rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا