ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the spectral density of a single level quantum dot coupled to superconducting leads focusing on the Andreev states appearing within the superconducting gap. We use two complementary approaches: the numerical renormalization group and the H artree-Fock approximation. Our results show the existence of up to four bound states within the gap when the ground state is a spin doublet (pi phase). Furthermore the results demonstrate the reliability of the mean field description within this phase. This is understood from a complete correspondence that can be established between the exact and the mean field quasiparticle excitation spectrum
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
We analyze the non-local transport properties of a d-wave superconductor coupled to metallic electrodes at nanoscale distances. We show that the non-local conductance exhibits an algebraical decay with distance rather than the exponential behavior wh ich is found in conventional superconductors. Crossed Andreev processes, associated with electronic entanglement, are favored for certain orientations of the symmetry axes of the superconductor with respect to the leads. These properties would allow its experimental detection using present technologies.
We present a theoretical approach to determine the electronic properties of nanoscale systems exhibiting strong electron-electron and electron-phonon interactions and coupled to metallic electrodes. This approach is based on an interpolative ansatz f or the electronic self-energy which becomes exact both in the limit of weak and strong coupling to the electrodes. The method provides a generalization of previous interpolative schemes which have been applied to the purely electronic case extensively. As a test case we consider the single level Anderson-Holstein model. The results obtained with the interpolative ansatz are in good agreement with existing data from Numerical Renormalization Group calculations. We also check our results by considering the case of the electrodes represented by a few discrete levels which can be diagonalized exactly. The approximation describes properly the transition from the Kondo regime where electron-electron interactions dominate to the polaronic case characterized by a strong electron-phonon interaction.
We analyze the ground state properties of an array of quantum dots connected in series between superconducting electrodes. This system is represented by a finite Hubbard chain coupled at both ends to BCS superconductors. The ground state is obtained using the Lanczos algorithm within a low energy theory in which the bulk superconductors are replaced by effective local pairing potentials. We study the conditions for the inversion of the sign of the Josephson coupling ($pi$-junction behavior) as a function of the model parameters. Results are presented in the form of phase diagrams which provide a direct overall view of the general trends as the size of the system is increased, exhibiting a strong even-odd effect. The analysis of the spin-spin correlation functions and local charges give further insight into the nature of the ground state and how it is transformed by the presence of superconductivity in the leads. Finally we study the scaling of the Josephson current with the system size and relate these results with previous calculations of Josephson transport through a Luttinger liquid.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا