ترغب بنشر مسار تعليمي؟ اضغط هنا

The proposed PINGU project (Precision IceCube Next Generation Upgrade) is expected to collect O(10^5) atmospheric muon and electron neutrino in a few years of exposure, and to probe the neutrino mass hierarchy through its imprint on the event spectra in energy and direction. In the presence of nonnegligible and partly unknown shape systematics, the analysis of high-statistics spectral variations will face subtle challenges that are largely unprecedented in neutrino physics. We discuss these issues both on general grounds and in the currently envisaged PINGU configuration, where we find that possible shape uncertainties at the (few) percent level can noticeably affect the sensitivity to the hierarchy. We also discuss the interplay between the mixing angle theta_23 and the PINGU sensitivity to the hierarchy. Our results suggest that more refined estimates of spectral uncertainties are needed in next-generation, large-volume atmospheric neutrino experiments.
Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at the same time, the mass-mixing parameters which govern $ u_e$ oscillations both at short wavelength (delta m^2 and theta_{12}) and at long wavelength (Delta m^2 and theta_{13}), as well as their tiny interference effects related to the mass hierarchy (i.e., the relative sign of Delta m^2 and delta m^2). In order to take full advantage of these opportunities, precision calculations and refined statistical analyses of event spectra are required. In such a context, we revisit several input ingredients, including: nucleon recoil in inverse beta decay and its impact on energy reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between energy scale and spectrum shape uncertainties. We also introduce a continuous parameter alpha, which interpolates smoothly between normal hierarchy (alpha=+1) and inverted hierarchy (alpha=-1). The determination of the hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by the distance of the true case (either alpha=+1 or alpha=-1) from the undecidable case (alpha=0). Numerical experiments are performed for the specific set up envisaged for the JUNO project, assuming a realistic sample of O(10^5) reactor events. We find a typical sensitivity of ~2 sigma to the hierarchy in JUNO, which, however, can be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are investigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.
109 - G. L. Fogli , E. Lisi , A. Marrone 2012
We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at the Neutrino 2012 Conference are also included. We focus on the correlations between theta_13 and the mixing angle theta_23, as well as between theta_13 and the neutrino CP-violation phase delta. We find interesting indications for theta_23< pi/4 and possible hints for delta ~ pi, with no significant difference between normal and inverted mass hierarchy.
The neutrino mixing angle theta(13) is at the focus of current neutrino research. From a global analysis of the available oscillation data in a 3-neutrino framework, we previously reported [Phys. Rev. Lett. 101, 141801 (2008)] hints in favor of theta (13)>0 at the 90 % C.L. Such hints are consistent with the recent indications of nu(mu)-->nu(e) appearance in the T2K and MINOS long-baseline accelerator experiments. Our global analysis of all the available data currently provides >3 sigma evidence for nonzero theta(13), with 1-sigma ranges sin^2 theta(13) = 0.021+-0.007 or 0.025+-0.007, depending on reactor neutrino flux systematics. Updated ranges are also reported for the other 3-neutrino oscillation parameters (delta m^2, sin^2 theta(12)) and (Delta m^2, sin^2 theta(23)).
61 - G.L. Fogli , E. Lisi , A. Marrone 2008
In this followup to Phys. Rev. D 75, 053001 (2007) [arXiv:hep-ph/0608060] we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-y ear and other data). We discuss their interplay with the final 0nu2beta decay results in 76-Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0nu2beta limits in 130-Te recently set by Cuoricino, and on prospective limits or signals from the KATRIN experiment.
69 - G.L. Fogli , E. Lisi , A. Marrone 2008
In the dense supernova core, self-interactions may align the flavor polarization vectors of neutrinos and antineutrinos, and induce collective flavor transformations. Different alignment ansatzes are known to describe approximately the phenomena of s ynchronized or bipolar oscillations, and the split of neutrino energy spectra. We discuss another phenomenon observed in some numerical experiments in inverted hierarchy, showing features akin to a low-energy split of antineutrino spectra. The phenomenon appears to be approximately described by another alignment ansatz which, in the considered scenario, reduces the (nonadiabatic) dynamics of all energy modes to only two neutrino plus two antineutrino modes. The associated spectral features, however, appear to be fragile when passing from single- to multi-angle simulations.
It has been speculated that quantum gravity might induce a foamy space-time structure at small scales, randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or neutrinos). Particle interferometry might then reveal non-standard decoherence effects, in addition to standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the phenomenology of such non-standard effects in the propagation of electron neutrinos in the Sun and in the long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of decoherence at neutrino energies E ~ few MeV. In the solar neutrino case, by means of a perturbative approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy domain (E^n with n = 0,+/-1,+/-2), theoretical predictions for two-family neutrino mixing are compared with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of non-standard decoherence effects, whose characteristic parameter gamma_0 can thus be significantly constrained. In the Lorentz-invariant case n=-1, we obtain the upper limit gamma_0<0.78 x 10^-26 GeV at 95% C.L. In the specific case n=-2, the constraints can also be interpreted as bounds on possible matter density fluctuations in the Sun, which we improve by a factor of ~ 2 with respect to previous analyses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا