ترغب بنشر مسار تعليمي؟ اضغط هنا

The single crystal study of CaBaCo4O7, a non collinear ferrimagnet (TC=64K), with a polar orthorhombic space group (Pbn21) between 4 K and 293 K, shows the appearance below TC of a large electric polarization along its c axis, reaching 17mC.m-2 at 10 K. At 62.5K, a magnetic field driven giant variation of polarization, P(9T)-P(0T)=8mC.m-2, is observed. Moreover, the present magnetoelectric measurements, are fully consistent with the mm2 magnetic point group, strongly supporting that this oxide is also ferrotoroidic. This ferrimagnetic oxide, which belongs to the 114 structural family, opens an avenue for the search of new magnetoelectrics.
49 - N. Hollmann , Z. Hu , A. Maignan 2012
We have investigated the electronic structure of CaCu3Ru4O12 and LaCu3Ru4O12 using soft x-ray photoelectron and absorption spectroscopy together with band structure and cluster configuration interaction calculations. We found the Cu to be in a robust divalent ionic state while the Ru is more itinerant in character and stabilizes the metallic state. Substitution of Ca by La predominantly affects the Ru states. We observed strong correlation effects in the Cu 3d states affecting the valence band line shape considerably. Using resonant photoelectron spectroscopy at the Cu L3 edge we were able to unveil the position of the Zhang-Rice singlet states in the one-electron removal spectrum of the Cu with respect to the Ru-derived metallic bands in the vicinity of the chemical potential.
Magnetoelectric coupling in the polycrystalline antiferromagnets CuFe0.95Rh0.05O2 and CuFeO2 has been investigated. For both samples, electric polarization was observed in the absence of an applied external magnetic field demonstrating that for multi ferroic research ceramics are worth to be studied. The observed magnetodielectric effect for CuFe0.95Rh0.05O2 in the electrically polar phase supports the existence of a noncollinear antiferromagnetic state. Interestingly, the electric polarization of this sample can be suppressed by a magnetic field. The temperature dependence of the relative magnitude of the magnetodielectric effect shows a discontinuity, clearly indicating different mechanisms of the magnetodielectric couplings in polar and paraelectric antiferromagnetic states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا