ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton im aging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.
The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا