ترغب بنشر مسار تعليمي؟ اضغط هنا

Here we revisit line identifications of type I supernovae and highlight trace amounts of unburned hydrogen as an important free parameter for the composition of the progenitor. Most 1-dimensional stripped-envelope models of supernovae indicate that o bserved features near 6000-6400 Ang in type I spectra are due to more than Si II 6355. However, while an interpretation of conspicuous Si II 6355 can approximate 6150 Ang absorption features for all type Ia supernovae during the first month of free expansion, similar identifications applied to 6250 Ang features of type Ib and Ic supernovae have not been as successful. When the corresponding synthetic spectra are compared to high quality time-series observations, the computed spectra are frequently too blue in wavelength. Some improvement can be achieved with Fe II lines that contribute red-ward of 6150 Ang, however the computed spectra either remain too blue, or the spectrum only reaches fair agreement when the rise-time to peak brightness of the model conflicts with observations by a factor of two. This degree of disagreement brings into question the proposed explosion scenario. Similarly, a detection of strong Si II 6355 in the spectra of broad-lined Ic and super-luminous events of type I/R is less convincing despite numerous model spectra used to show otherwise. Alternatively, we suggest 6000-6400 Ang features are possibly influenced by either trace amounts of hydrogen, or blue-shifted absorption and emission in Halpha, the latter being an effect which is frequently observed in the spectra of hydrogen-rich, type II supernovae.
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 gri zy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as Type IIL SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
We present late-time radio and X-ray observations of the nearby sub-energetic Gamma-Ray Burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB100316D to be intermediate between hig hly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ~10^49 erg is coupled to mildly-relativistic (Gamma=1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with rate Mdot ~10^-5 Msun yr^-1 (for wind velocity v_w = 1000 km s^-1). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB100316D as one of the weakest central-engine driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation which dominates over the standard afterglow at late times (t>10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.
We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova, SN 2005ek. Reaching a peak magnitude of M_R = -17.3 and decaying by ~3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of ~0.3 Msun that is dominated by oxygen (~80%), while the pseudo-bolometric light curve is consistent with an explosion powered by ~0.03 Msun of radioactive Ni-56. Although previous rapidly evolving events (e.g., SN 1885A, SN 1939B, SN 2002bj, SN 2010X) were hypothesized to be produced by the detonation of a helium shell on a white dwarf, oxygen-dominated ejecta are difficult to reconcile with this proposed mechanism. We find that the properties of SN 2005ek are consistent with either the edge-lit double detonation of a low-mass white dwarf or the iron-core collapse of a massive star, stripped by binary interaction. However, if we assume that the strong spectroscopic similarity of SN 2005ek to other SN Ic is an indication of a similar progenitor channel, then a white-dwarf progenitor becomes very improbable. SN 2005ek may be one of the lowest mass stripped-envelope core-collapse explosions ever observed. We find that the rate of such rapidly declining Type I events is at least 1-3% of the normal SN Ia rate.
We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this clas s of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (c.f. SN 2006jc), dominated by intermediate-width (3x10^3 km/s) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt = 9-23 days and shows an NUV-NIR SED with temperature > 17x10^3 K and a peak rise magnitude of Mz = -18.9 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17 - 100 M_sun) explosion within a He-enriched circumstellar medium. However, unlike previous Type Ibn supernovae, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits (Sigma Halpha < 2x10^-3 M_sun/yr/kpc^2). We therefore discuss white dwarf binary systems as a possible progenitor channel for SNe Ibn. We conclude that PS1-12sk represents either a fortuitous and statistically unlikely discovery, evidence for a top-heavy IMF in galaxy cluster cooling flow filaments, or the first clue suggesting an alternate progenitor channel for Type Ibn SNe.
We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within 1 day of explosion and span s everal months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on the timescale of one week. High-cadence monitoring of this transition suggests that absorption attributable to a high velocity (> 12,000 km/s) H-rich shell is not rare in Type Ib events. Radio observations imply a shock velocity of v = 0.13c and a progenitor star mass-loss rate of 1.4 x 10^{-5} Msun yr^{-1} (assuming wind velocity v_w=10^3 km/s). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 Msun), compact (R* <= 1x10^{11} cm), He core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass-loss. We conclude that SN 2011eis rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of explosion rates for Type IIb and Ib objects, and that important information about a progenitor stars evolutionary state and mass-loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.
We report on Expanded Very Large Array (EVLA) observations of the Type IIb supernova 2011dh, performed over the first 100 days of its evolution and spanning 1-40 GHz in frequency. The radio emission is well-described by the self-similar propagation o f a spherical shockwave, generated as the supernova ejecta interact with the local circumstellar environment. Modeling this emission with a standard synchrotron self-absorption (SSA) model gives an average expansion velocity of v approx 0.1c, supporting the classification of the progenitor as a compact star (R_* approx 10^11 cm). We find that the circumstellar density is consistent with a {rho} propto r^-2 profile. We determine that the progenitor shed mass at a constant rate of approx 3 times 10^-5 M_odot / yr, assuming a wind velocity of 1000 km / s (values appropriate for a Wolf-Rayet star), or approx 7 times 10^-7 M_odot / yr assuming 20 km / s (appropriate for a yellow supergiant [YSG] star). Both values of the mass-loss rate assume a converted fraction of kinetic to magnetic energy density of {epsilon}_B = 0.1. Although optical imaging shows the presence of a YSG, the rapid optical evolution and fast expansion argue that the progenitor is a more compact star - perhaps a companion to the YSG. Furthermore, the excellent agreement of the radio properties of SN 2011dh with the SSA model implies that any YSG companion is likely in a wide, non-interacting orbit.
We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova (SN) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just ~4 days after explosion. The SN had a peak luminosity, M_R ~ -20.2 m ag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v_Si ~ 19,000 km/s at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56 Ni, M_Ni = 0.9 M_solar. Modeling of the light-curve points to a total ejecta mass, M_ej ~ 4.7 M_sol, and total kinetic energy, E_K ~ 11x10^51 ergs. The ratio of M_Ni to M_ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)_PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. We constrain any gamma-ray emission with E_gamma < 6x10^{48} erg (25-150 keV) and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy, E > 10^48 erg. We therefore rule out the association of a relativistic outflow like those which accompanied SN 1998bw and traditional long-duration GRBs, but place less-stringent constraints on a weak afterglow like that seen from XRF 060218. These observations challenge the importance of progenitor metallicity for the production of a GRB, and suggest that other parameters also play a key role.
We present the discovery of two ultra-luminous supernovae (SNe) at z ~ 0.9 with the Pan-STARRS1 Medium-Deep Survey. These SNe, PS1-10ky and PS1-10awh, are amongst the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap a nd SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_bol ~ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time-series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10^51 erg. We find photospheric velocities of 12,000-19,000 km/s with no evidence for deceleration measured across ~3 rest-frame weeks around light-curve peak, consistent with the expansion of an optically-thick massive shell of material. We show that, consistent with findings for other ultra-luminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
Active galactic nuclei (AGN), powered by long-term accretion onto central supermassive black holes, produce relativistic jets with lifetimes of greater than one million yr that preclude observations at birth. Transient accretion onto a supermassive b lack hole, for example through the tidal disruption of a stray star, may therefore offer a unique opportunity to observe and study the birth of a relativistic jet. On 2011 March 25, the Swift {gamma}-ray satellite discovered an unusual transient source (Swift J164449.3+573451) potentially representing such an event. Here we present the discovery of a luminous radio transient associated with Swift J164449.3+573451, and an extensive set of observations spanning centimeter to millimeter wavelengths and covering the first month of evolution. These observations lead to a positional coincidence with the nucleus of an inactive galaxy, and provide direct evidence for a newly-formed relativistic outflow, launched by transient accretion onto a million solar mass black hole. While a relativistic outflow was not predicted in this scenario, we show that the tidal disruption of a star naturally explains the high-energy properties, radio luminosity, and the inferred rate of such events. The weaker beaming in the radio compared to {gamma}-rays/X-rays, suggests that radio searches may uncover similar events out to redshifts of z ~ 6.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا