ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - A. M. Hughes 2013
Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominant ly toroidal, and that disks should exhibit millimeter polarization fractions of 2-3%. While subsequent work has not confirmed these high polarization fractions, either the wavelength of observation or the target sources differed from the original observations. Here we present new polarimetric observations of three nearby circumstellar disks at 2 resolution with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter Astronomy (CARMA). We reobserve GM Aur and DG Tau, the systems in which millimeter polarization detections have been claimed. Despite higher resolution and sensitivity at wavelengths similar to the previous observations, the new observations do not show significant polarization. We also add observations of a new HAeBe system, MWC 480. These observations demonstrate that a very low (<0.5%) polarization fraction is probably common at large (>100 AU) scales in bright circumstellar disks. We suggest that high-resolution observations may be worthwhile to probe magnetic field structure on linear distances smaller than the disk scale height, as well as in regions closer to the star that may have larger MRI-induced magnetic field strengths.
76 - A. M. Hughes 2012
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with hi gher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 um and angular resolution of 5; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and angular resolution of 5; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3-sigma) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width >50 AU. The interferometric data require that at least half of the 860 um emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of <100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.
105 - A. M. Hughes 2010
The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of the nearby RCrA association, RX J1842.9-3532 and RX J1852.3-3700. We present new arcsecond-resolution maps of their 230 GHz continuum emission from the Submillimeter Array and unresolved CO(3-2) spectra from the Atacama Submillimeter Telescope Experiment. By combining these data with broadband fluxes from the literature and infrared fluxes and spectra from the catalog of the Formation and Evolution of Planetary Systems (FEPS) Legacy program on the Spitzer Space Telescope, we assemble a multiwavelength data set probing the gas and dust disks. Using the Monte Carlo radiative transfer code RADMC to model simultaneously the SED and millimeter continuum visibilities, we derive basic dust disk properties and identify an inner cavity of radius 16 AU in the disk around RX J1852.3-3700. We also identify an optically thin 5 AU cavity in the disk around RX J1842.9-3532, with a small amount of optically thick material close to the star. The molecular line observations suggest an intermediate disk inclination in RX J1842.9-3532, consistent with the continuum emission. In combination with the dust models, the molecular data allow us to derive a lower CO content than expected, suggesting that the process of gas clearing is likely underway in both systems, perhaps simultaneously with planet formation.
We present high spatial resolution (< 0.3 = 40$ AU) Submillimeter Array observations of the 865 micron continuum emission from the circumstellar disk around the young star DoAr 25. Despite its bright millimeter emission, this source exhibits only a c omparatively small infrared excess and low accretion rate, suggesting that the material and structural properties of the inner disk may be in an advanced state of evolution. A simple model of the physical conditions in the disk is derived from the submillimeter visibilities and the complete spectral energy distribution using a Monte Carlo radiative transfer code. For the standard assumption of a homogeneous grain size distribution at all disk radii, the results indicate a shallow surface density profile, $Sigma propto r^{-p}$ with p = 0.34, significantly less steep than a steady-state accretion disk (p = 1) or the often adopted minimum mass solar nebula (p = 1.5). Even though the total mass of material is large (M_d = 0.10 M_sun), the densities inferred in the inner disk for such a model may be too low to facilitate any mode of planet formation. However, alternative models with steeper density gradients (p = 1) can explain the observations equally well if substantial grain growth in the planet formation region (r < 40 AU) has occurred. We discuss these data in the context of such models with dust properties that vary with radius and highlight their implications for understanding disk evolution and the early stages of planet formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا