ترغب بنشر مسار تعليمي؟ اضغط هنا

The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. The GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01 deg (E{gamma} > 100 GeV), the energy resolution ~1% (E{gamma} > 10 GeV), and the proton rejection factor ~10E6. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV - 3 TeV is presented. The angular resolution of the instrument, 1-2{deg} at E{gamma} ~100 MeV and ~0.01^{circ} at E{gamma} > 100 GeV, its energy resolu tion ~1% at E{gamma} > 100 GeV, and the proton rejection factor ~10E6 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا