ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss processes in galactic cosmic ray (GCR) acceleration sites - supernova remnants, compact associations of young massive stars, and superbubbles. Mechanisms of efficient conversion of the mechanical power of the outflows driven by supernova s hocks and fast stellar winds of young stars into magnetic fields and relativistic particles are discussed. The high efficiency of particle acceleration in the sources implies the importance of nonlinear feedback effects in a symbiotic relationship where the magnetic turbulence required to accelerate the CRs is created by the accelerated CRs themselves. Non-thermal emission produced by relativistic particles (both those confined in and those that escape from the cosmic accelerators) can be used to constrain the basic physical models of the GCR sources. High resolution X-ray synchrotron imaging, combined with GeV-TeV gamma ray spectra, is a powerful tool to probe the maximum energies of accelerated particles. Future MeV regime spectroscopy will provide unique information on the composition of accelerated particles.
Powerful stellar winds and supernova explosions with intense energy release in the form of strong shock waves can convert a sizeable part of the kinetic energy release into energetic particles. The starforming regions are argued as a favorable site o f energetic particle acceleration and could be efficient sources of nonthermal emission. We present here a non-linear time-dependent model of particle acceleration in the vicinity of two closely approaching fast magnetohydrodynamic (MHD) shocks. Such MHD flows are expected to occur in rich young stellar cluster where a supernova is exploding in the vicinity of a strong stellar wind of a nearby massive star. We find that the spectrum of the high energy particles accelerated at the stage of two closely approaching shocks can be harder than that formed at a forward shock of an isolated supernova remnant. The presented method can be applied to model particle acceleration in a variety of systems with colliding MHD flows.
Recent X-ray observations of the supernova remnant IC443 interacting with molecular clouds have shown the presence of a new population of hard X-ray sources related to the remnant itself, which has been interpreted in terms of fast ejecta fragment pr opagating inside the dense environment. Prompted by these studies, we have obtained a deep {sl XMM-Newton} observation of the supernova remnant (SNR) Kes 69, which also shows signs of shock-cloud interaction. We report on the detection of 18 hard X-ray sources in the field of Kes 69, a significant excess of the expected galactic source population in the field, spatially correlated with CO emission from the cloud in the remnant environment. The spectra of 3 of the 18 sources can be described as hard power laws with photon index <2 plus line emission associated to K-shell transitions. We discuss the two most promising scenarios for the interpretation of the sources, namely fast ejecta fragments (as in IC443) and cataclysmic variables. While most of the observational evidences are consistent with the former interpretation, we cannot rule out the latter.
Synchrotron radiation of ultra-relativistic particles accelerated in a pulsar wind nebula may dominate its spectrum up to gamma-ray energies. Because of the short cooling time of the gamma-ray emitting electrons, the gamma-ray emission zone is in the immediate vicinity of the acceleration site. The particle acceleration likely occurs at the termination shock of the relativistic striped wind, where multiple forced magnetic field reconnections provide strong magnetic fluctuations facilitating Fermi acceleration processes. The acceleration mechanisms imply the presence of stochastic magnetic fields in the particle acceleration region, which cause stochastic variability of the synchrotron emission. This variability is particularly strong in the steep gamma-ray tail of the spectrum, where modest fluctuations of the magnetic field lead to strong flares of spectral flux. In particular, stochastic variations of magnetic field, which may lead to quasi-cyclic gamma-ray flares, can be produced by the relativistic cyclotron ion instability at the termination shock. Our model calculations of the spectral and temporal evolution of synchrotron emission in the spectral cut-off regime demonstrate that the intermittent magnetic field concentrations dominate the gamma-ray emission from highest energy electrons and provide fast, strong variability even for a quasi-steady distribution of radiating particles. The simulated light curves and spectra can explain the very strong gamma-ray flares observed in the Crab nebula and the lack of strong variations at other wavelengths. The model predicts high polarization in the flare phase, which can be tested with future polarimetry observations.
We briefly discuss models of energetic particle acceleration by supernova shock in active starforming regions at different stages of their evolution. Strong shocks may strongly amplify magnetic fields due to cosmic ray driven instabilities. We discus s the magnetic field amplification emphasizing the role of the long-wavelength instabilities. Supernova shock propagating in the vicinity of a powerful stellar wind in a young stellar cluster is argued to increase the maximal CR energies at a given evolution stage of supernova remnant (SNR) and can convert a sizeable fraction of the kinetic energy release into energetic particles.
The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of p ositrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000s, the SPI instrument aboard ESAs INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.
The nature of the extended hard X-ray source XMMU J061804.3+222732 and its surroundings is investigated using XMM-Newton, Chandra, and Spitzer observations. This source is located in an interaction region of the IC 443 supernova remnant with a neighb oring molecular cloud. The X-ray emission consists of a number of bright clumps embedded in an extended structured non-thermal X-ray nebula larger than 30 in size. Some clumps show evidence for line emission at ~1.9 keV and ~3.7 keV at the 99% confidence level. Large-scale diffuse radio emission of IC 443 passes over the source region, with an enhancement near the source. An IR source of about 14 x 7 size is prominent in the 24 um, 70 um, and 2.2 um bands, adjacent to a putative Si K-shell X-ray line emission region. The observed IR/X-ray morphology and spectra are consistent with those expected for J/C-type shocks of different velocities driven by fragmented supernova ejecta colliding with the dense medium of a molecular cloud. The IR emission of the source detected by Spitzer can be attributed to both continuum emission from an HII region created by the ejecta fragment and line emission excited by shocks. This source region in IC 443 may be an example of a rather numerous population of hard X-ray/IR sources created by supernova explosions in the dense environment of star-forming regions. Alternative Galactic and extragalactic interpretations of the observed source are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا