ترغب بنشر مسار تعليمي؟ اضغط هنا

We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below $T_{rm{N}}~approx 0.4$ K and corresponds to a magnetic correlation length of $xi_{rm{n}} approx$ 80 $rm{AA}$, and a broad component that persists up to $T^*approx$ 0.7 K and corresponds to antiferromagnetic correlations extending over $xi_{rm{b}} approx$ 20 $rm{AA}$. Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.
Rare earth (R) half-Heusler compounds, RBiPt, exhibit a wide spectrum of novel ground states. Recently, GdBiPt has been proposed as a potential antiferromagnetic topological insulator (AFTI). We have employed x-ray resonant magnetic scattering to elu cidate the microscopic details of the magnetic structure in GdBiPt below T_N = 8.5 K. Experiments at the Gd L_2 absorption edge show that the Gd moments order in an antiferromagnetic stacking along the cubic diagonal [1 1 1] direction satisfying the requirement for an AFTI, where both time-reversal symmetry and lattice translational symmetry are broken, but their product is conserved.
Neutron diffraction studies of Ba(Fe[1-x]Co[x])2As2 reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse sp litting (0, +-e, 0) from the nominal commensurate antiferromagnetic propagation vector Q[AFM] = (1, 0, 1) (in orthorhombic notation) where e = 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.
Neutron and x-ray diffraction studies of Ba(Fe{1-x}Mn{x})2As2 for low doping concentrations (x <= 0.176) reveal that at a critical concentration, 0.102 < x < 0.118, the tetragonal-to-orthorhombic transition abruptly disappears whereas magnetic orderi ng with a propagation vector of (1/2 1/2 1) persists. Among all of the iron arsenides this observation is unique to Mn-doping, and unexpected because all models for stripe-like antiferromagnetic order anticipate an attendant orthorhombic distortion due to magnetoelastic effects. We discuss these observations and their consequences in terms of previous studies of Ba(Fe{1-x}TM{x})2As2 compounds (TM = Transition Metal), and models for magnetic ordering in the iron arsenide compounds.
We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commens urate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.
113 - A. Kreyssig , M. G. Kim , S. Nandi 2010
Neutron diffraction and high-resolution x-ray diffraction studies find that, similar to the closely related underdoped Ba(Fe[1-x]Cox)2As2 superconducting compounds, Ba(Fe0.961Rh0.039)2As2 shows strong evidence of competition and coexistence between s uperconductivity and antiferromagnetic order below the superconducting transition, Tc = 14 K. The transition temperatures for both the magnetic order and orthorhombic distortion are in excellent agreement with those inferred from resistivity measurements, and both order parameters manifest a distinct decrease in magnitude below Tc. These data suggest that the strong interaction between magnetism and superconductivity is a general feature of electron-doped Ba(Fe[1-x]TMx)2As2 superconductors (TM = Transition Metal).
Inelastic neutron scattering measurements have been performed on underdoped Ba(Fe1-xCox)2As2 (x = 4.7%) where superconductivity and long-range antiferromagnetic (AFM) order coexist. The broad magnetic spectrum found in the normal state develops into a magnetic resonance feature below TC that has appreciable dispersion along c-axis with a bandwidth of 3-4 meV. This is in contrast to the optimally doped x = 8.0% composition, with no long-range AFM order, where the resonance exhibits a much weaker dispersion [see Lumsden et al. Phys. Rev. Lett. 102, 107005 (2009)]. The results suggest that the resonance dispersion arises from interlayer spin correlations present in the AFM ordered state.
CaFe2As2 single crystals under uniaxial pressure applied along the c axis exhibit the coexistence of several structural phases at low temperatures. We show that the room-temperature tetragonal phase is stabilized at low temperatures for pressures abo ve 0.06 GPa, and its weight fraction attains a maximum in the region where superconductivity is observed under applied uniaxial pressure. Simultaneous resistivity measurements strongly suggest that this phase is responsible for the superconductivity in CaFe2As2 found below 10 K in samples subjected to nonhydrostatic pressure conditions.
We present a single crystal neutron diffraction study of the magnetic short-range correlations in Tb$_5$Ge$_4$ which orders antiferromagnetically below the Neel temperature $T_N$ $approx$ 92 K. Strong diffuse scattering arising from magnetic short-ra nge correlations was observed in wide temperature ranges both below and above $T_N$. The antiferromagnetic ordering in Tb$_5$Ge$_4$ can be described as strongly coupled ferromagnetic block layers in the $ac$-plane that stack along the b-axis with weak antiferromagnetic inter-layer coupling. Diffuse scattering was observed along both $a^*$ and $b^*$ directions indicating three-dimensional short-range correlations. Moreover, the $q$-dependence of the diffuse scattering is Squared-Lorentzian in form suggesting a strongly clustered magnetic state that may be related to the proposed Griffiths-like phase in Gd$_5$Ge$_4$.
96 - S. Nandi , A. Kreyssig , Y. Lee 2009
Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to 6 K, an incommensurate antiferromagnetic (ICM)structure with a tempera ture dependent propagation vector (0 0 0.9) coexists with a commensurate antiferromagnetic (CM) structure. Angular-dependent measurements of the magnetic intensity indicate that the magnetic moments lie in the tetragonal basal plane and are ferromagnetically aligned within the a-b plane for both magnetic structures. The ICM structure is a spiral-like magnetic structure with a turn angle of 162 deg between adjacent Eu planes. In the CM structure, this angle is 180 deg. These results are consistent with band-structure calculations which indicate a strong sensitivity of the magnetic configuration on the Eu valence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا