ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized heating of a gas by intense laser pulses leads to interesting acoustic, hydrodynamic and optical effects with numerous applications in science and technology, including controlled wave guiding and remote atmosphere sensing. Rotational excit ation of molecules can serve as the energy source for raising the gas temperature. Here, we study the dynamics of energy transfer from the molecular rotation to heat. By optically imaging a cloud of molecular superrotors, created with an optical centrifuge, we experimentally identify two separate and qualitatively different stages of its evolution. The first non-equilibrium gyroscopic stage is characterized by the modified optical properties of the centrifuged gas - its refractive index and optical birefringence, owing to the ultrafast directional molecular rotation, which survives tens of collisions. The loss of rotational directionality is found to overlap with the release of rotational energy to heat, which triggers the second stage of thermal expansion. The crossover between anisotropic rotational and isotropic thermal regimes is in agreement with recent theoretical predictions and our hydrodynamic calculations.
We use an optical centrifuge to deposit a controllable amount of rotational energy into dense molecular ensembles. Subsequent rotation-translation energy transfer, mediated by thermal collisions, results in the localized heating of the gas and genera tes strong sound wave, clearly audible to the unaided ear. For the first time, the amplitude of the sound signal is analyzed as a function of the experimentally measured rotational energy. The proportionality between the two experimental observables confirms that rotational excitation is the main source of the detected sound wave. As virtually all molecules, including the main constituents of the atmosphere, are amenable to laser spinning by the centrifuge, we anticipate this work to stimulate further development in the area of photo-acoustic control and spectroscopy.
We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. Optical centrifuge is used to create dense ensembles of oxygen molecules in ultra-high rotational states. It is shown for the first time, that the gas of rotat ing molecules becomes optically birefringent in the presence of magnetic field. The discovered effect of magneto-rotational birefringence indicates preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا