ترغب بنشر مسار تعليمي؟ اضغط هنا

The neutron-rich nuclei $^{109}$Pd and $^{111}$Pd were produced as fission fragments following the $^{30}$Si + $^{168}$Er reaction at 142 MeV. Using the identification based on the coincidences with the complementary fission fragments, the only posit ive-parity bands observed so far in $^{109}$Pd and $^{111}$Pd emerged from this work. A band, built on top of the 5/2$^+$ ground state exhibiting $Delta I$ = 1 energy-level staggering, was observed in each of these nuclei. Both nuclei of interest, $^{109}$Pd and $^{111}$Pd, are suggested to lie in the transitional region of Pd isotopes of maximum $gamma$-softness. The ground states of both nuclei are predicted by TRS calculations to be extremely $gamma$-soft with shallow triaxial minima. The first crossing in the new bands is proposed to be due to an alignment of $h^2_{11/2}$ neutrons.
A new method for the determination of electric signal time-shifts is introduced. As the Kolmogorov-Smirnov test, it is based on the comparison of the cumulative distribution functions of the reference signal with the test signal. This method is very fast and thus well suited for on-line applications. It is robust to noise and its performances in terms of precision are excellent for time-shifts ranging from a fraction to several sample durations. PACS. 29.40.Gx (Tracking and position-sensitive detectors), 29.30.Kv (X- and -ray spectroscopy), 07.50.Qx (Signal processing electronics)
Detection systems rely more and more on on-line or off-line comparison of detected signals with basis signals in order to determine the characteristics of the impinging particles. Unfortunately, these comparisons are very sensitive to the random time shifts that may alter the signal delivered by the detectors. We present two fast algebraic methods to determine the value of the time shift and to enhance the reliability of the comparison to the basis signals.
A new method is proposed for the problem of solving chi-square minimization with a positive solution. This method is embodied in an evolution of the popular NNLS algorithm. Its efficiency with respect to residue minimization is illustrated by the imp rovement it permits on the location of gamma-interactions inside an AGATA HPGe detector.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا