ترغب بنشر مسار تعليمي؟ اضغط هنا

429 - A. Kashlinsky 2009
This paper presents detailed analysis of large-scale peculiar motions derived from a sample of ~ 700 X-ray clusters and cosmic microwave background (CMB) data obtained with WMAP. We use the kinematic Sunyaev-Zeldovich (KSZ) effect combining it into a cumulative statistic which preserves the bulk motion component with the noise integrated down. Such statistic is the dipole of CMB temperature fluctuations evaluated over the pixels of the cluster catalog (Kashlinsky & Atrio-Barandela 2000). To remove the cosmological CMB fluctuations the maps are Wiener-filtered in each of the eight WMAP channels (Q, V, W) which have negligible foreground component. Our findings are as follows: The thermal SZ (TSZ) component of the clusters is described well by the Navarro-Frenk-White profile expected if the hot gas traces the dark matter in the cluster potential wells. Such gas has X-ray temperature decreasing rapidly towards the cluster outskirts, which we demonstrate results in the decrease of the TSZ component as the aperture is increased to encompass the cluster outskirts. We then detect a statistically significant dipole in the CMB pixels at cluster positions. Arising exclusively at the cluster pixels this dipole cannot originate from the foreground or instrument noise emissions and must be produced by the CMB photons which interacted with the hot intracluster gas via the SZ effect. The dipole remains as the monopole component, due to the TSZ effect, vanishes within the small statistical noise out to the maximal aperture where we still detect the TSZ component. We demonstrate with simulations that the mask and cross-talk effects are small for our catalog and contribute negligibly to the measurements. The measured dipole thus arises from the KSZ effect produced by the coherent large scale bulk flow motion.
66 - A. Kashlinsky 2008
Peculiar velocities of clusters of galaxies can be measured by studying the fluctuations in the cosmic microwave background (CMB) generated by the scattering of the microwave photons by the hot X-ray emitting gas inside clusters. While for individual clusters such measurements result in large errors, a large statistical sample of clusters allows one to study cumulative quantities dominated by the overall bulk flow of the sample with the statistical errors integrating down. We present results from such a measurement using the largest all-sky X-ray cluster catalog combined to date and the 3-year WMAP CMB data. We find a strong and coherent bulk flow on scales out to at least > 300 h^{-1} Mpc, the limit of our catalog. This flow is difficult to explain by gravitational evolution within the framework of the concordance LCDM model and may be indicative of the tilt exerted across the entire current horizon by far-away pre-inflationary inhomogeneities.
Using WMAP 3-year data at the locations of close to $sim 700$ X-ray selected clusters we have detected the amplitude of the thermal Sunyaev-Zeldovich (TSZ) effect at the 15$sigma$ level, the highest statistical significance reported so far. Owing to the large size of our cluster sample, we are able to detect the corresponding CMB distortions out to large cluster-centric radii. The region over which the TSZ signal is detected is, on average, four times larger in radius than the X-ray emitting region, extending to $sim 3h_{70}^{-1}$Mpc. We show that an isothermal $beta$ model does not fit the electron pressure at large radii; instead, the baryon profile is consistent with the Navarro-Frenk-White profile, expected for dark matter in the concordance $Lambda$CDM model. The X-ray temperature at the virial radius of the clusters falls by a factor $sim 3-4$ from the central value, depending on the cluster concentration parameter. Our results suggest that cluster dynamics at large radii is dominated by dark matter and is well described by Newtonian gravity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا