ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar content in and around Sh2-311 region have been studied using the deep optical observations as well as near-infrared (NIR) data from 2MASS. The region contains three clusters, viz. NGC 2467, Haffner 18 and Haffner 19. We have made an attem pt to distinguish the stellar content of these individual regions as well as to re-determine their fundamental parameters such as distance, reddening, age, onto the basis of a new and more extended optical and infrared photometric data set. NGC 2467 and Haffner 19 are found to be located in the Perseus arm at the distances of 5.0 $pm$ 0.4 kpc and 5.7 $pm$ 0.4 kpc, respectively, whereas Haffner 18 is located at the distance of 11.2 $pm$ 1.0 kpc. The clusters NGC 2467 and Haffner 19 might have formed from the same molecular cloud, whereas the cluster Haffner 18 is located in the outer galactic arm, i.e. the Norma-Cygnus arm. We identify 8 class II young stellar objects (YSOs) using the NIR $(J - H)/(H - K)$ two colour diagram. We have estimated the age and mass of the YSOs identified in the present work and those by Snider et al. (2009) using the $V/(V - I)$ colour-magnitude diagram. The estimated ages and mass range of the majority of the YSOs are $lesssim$1 Myr and $sim$0.4 - 3.5 msun, respectively, indicating that these sources could be T-Tauri stars or their siblings. Spatial distribution of the YSOs shows that some of the YSOs are distributed around the H II region Sh2-311, suggesting a triggered star formation at its periphery.
In this paper we present time series photometry of 104 variable stars in the cluster region NGC 1893. The association of the present variable candidates to the cluster NGC 1893 has been determined by using $(U-B)/(B-V)$ and $(J-H)/(H-K)$ two colour d iagrams, and $V/(V-I)$ colour magnitude diagram. Forty five stars are found to be main-sequence variables and these could be B-type variable stars associated with the cluster. We classified these objects as $beta$ Cep, slowly pulsating B stars and new class variables as discussed by Mowlavi et al. (2013). These variable candidates show $sim$0.005 to $sim$0.02 mag brightness variations with periods of $<$ 1.0 d. Seventeen new class variables are located in the $H-R$ diagram between the slowly pulsating B stars and $delta$ Scuti variables. Pulsation could be one of the causes for periodic brightness variations in these stars. The X-ray emission of present main-sequence variables associated with the cluster lies in the saturated region of X-ray luminosity versus period diagram and follows the general trend by Pizzolato et al. (2003).
Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTS s) in the NGC 1893 region. We found a correlation between the X-ray luminosity, $L_X$, and the stellar mass (in the range 0.2$-$2.0 msun) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study ($sim$ 0.9) for NGC 1893 is smaller than those ($sim$1.4 - 3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 ($sim$ 1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age (in the range $sim $ 0.4 Myr - 5 Myr). The decrease of the X-ray luminosity of TTSs (slope $sim$ -0.6) in the case of NGC 1893 seems to be faster than observed in the case of other star-forming regions (slope -0.2 to -0.5). There is indication that the sources having relatively large NIR excess have relatively lower $L_X$ values. TTSs in NGC 1893 do not follow the well established X-ray activity - rotation relation as in the case of main-sequence stars.
$UBVRI$ photometry of the five open clusters Czernik 4, Berkeley 7, NGC 2236, NGC 7226 and King 12 has been carried out using ARIES 104 cm telescope, Nainital. Fundamental cluster parameters such as foreground reddening $E(B-V)$, distance, and age ha ve been derived by means of the observed two colour and colour-magnitude diagrams, coupled to comparisons with theoretical models. $E(B-V)$ values range from 0.55 to 0.74 mag, while ages derived for these clusters range from $sim$10 to $sim$500 Myr. We have also studied the spatial structure, mass function and mass segregation effects. The present study shows that evaporation of low mass stars from the halo of the clusters increases as they evolve.
We present results of multi-epoch (fourteen nights during 2007-2010) $V$-band photometry of the cluster NGC 1893 region to identify photometric variable stars in the cluster. The study identified a total of 53 stars showing photometric variability. T he members associated with the region are identified on the basis of spectral energy distribution, $J-H/H-K$ two colour diagram and $V/V-I$ colour-magnitude diagram. The ages and masses of the majority of pre-main-sequence sources are found to be $lesssim$ 5 Myr and in the range 0.5 $lesssim$ $M/M_{odot}$ $lesssim$ 4, respectively. These pre-main-sequence sources hence could be T Tauri stars. We also determined the physical parameters like disk mass and accretion rate from the spectral energy distribution of these T Tauri stars. The periods of majority of the T Tauri stars range from 0.1 to 20 day. The brightness of Classical T Tauri stars is found to vary with larger amplitude in comparison to Weak line T Tauri stars. It is found that the amplitude decreases with increase in mass, which could be due to the dispersal of disks of massive stars.
We present multiwavelength optical linear polarimetric observations of 69 stars toward the young open cluster Be 59. The observations reveal the presence of three dust layers located at the distances of sim300, sim500 and sim700 pc. The dust layers p roduce a total polarization Pv sim 5.5 per cent. The mean values of polarization and polarization angles due to the dust layers are found to increase systematically with distance. We show that polarimetry in combination with the (U - B) - (B - V) colour-colour diagram yields a better identification of cluster members. The polarization measurements suggest that the polarization due the intra-cluster medium is sim 2.2 per cent. An anomalous reddening law exists for the cluster region, indicating a relatively larger grain size than that in the diffuse ISM. The spatial variation of the polarization and E(B - V) is found to increase with radial distance from the cluster center, whereas the {theta}v and {lambda}max are found to decrease with increasing radial distance from the cluster center. About 40 per cent of cluster members show the signatures of either intrinsic polarization or rotation in their polarization angles. There is an indication that the star light of the cluster members might have been depolarized because of non-uniform alignment of dust grains in the foreground dust layers and in the intra-cluster medium.
We present time-series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04 m telescope at ARIES, Nainital, we have identified 42 variables in a field of 13x13 around the cluster. The probable members of the clu ster are identified using (V, V-I) colour-magnitude diagram and (J-H, H-K) colour-colour diagram. Thirty one variables are found to be pre-main sequence stars associated with the cluster. The ages and masses of pre-main sequence stars are derived from colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main sequence variable candidates range from 1 to 5 Myrs. The masses of these pre-main sequence variable stars are found to be in the range of ~0.3 to ~3.5 Msun and these could be T Tauri stars. The present statistics reveal that about 90% T Tauri stars have periods < 15 days. The classical T Tauri stars are found to have larger amplitude in comparison to the weak line T Tauri stars. There is an indication that the amplitude decreases with increase of the mass, which could be due to the dispersal of disk of relatively massive stars.
(Abridged) This paper presents integrated magnitude and colours for synthetic clusters. The integrated parameters have been obtained for the whole cluster population as well as for the main-sequence (MS) population of star clusters. We have also esti mated observed integrated magnitudes and colours of MS population of galactic open clusters, LMC and SMC star clusters. It is found that the colour evolution of MS population of star clusters is not affected by the stochastic fluctuations, however these fluctuations significantly affect the colour evolution of the whole cluster population. The fluctuations are maximum in $(V-I)$ colour in the age range 6.7 $<$ log (age) $<$ 7.5. Evolution of integrated colours of MS population of the clusters in the Milky Way, LMC and SMC, obtained in the present study are well explained by the present synthetic cluster model. The observed integrated $(B-V)$ colours of MS population of LMC star clusters having age $geq$ 500 Myr seem to be distributed around $Z=$ 0.004 model, whereas $(V-I)$ colours are found to be more bluer than those predicted by the $Z=$ 0.004 model. $(V-I)$ vs $(B-V)$ two-colour diagram for the MS population of the Milky Way star clusters shows a fair agreement between the observations and present model, however the diagrams for LMC and SMC clusters indicate that observed $(V-I)$ colours are relatively bluer. Possible reasons for this anomaly have been discussed.
Using homogeneous CCD photometric data from the 105-cm Kiso Schmidt telescope covering a 50 x 50 field, we study the mass functions (MFs) of nine open clusters. The ages and Galactocentric distances of the target clusters vary from 16 - 2000 Myr and 9-10.8 kpc, respectively. The values of MF slopes vary from -1.1 to -2.1. The classical value derived by Salpeter (1955) for the slope of the IMF is Gamma = -1.35. The MFs in the outer regions of the clusters are found to be steeper than in the inner regions, indicating the presence of mass segregation in the clusters.The MF slopes (in the outer region as well as the whole cluster) undergo an exponential decay with the evolutionary parameter tau (= age/ relaxation time). It seems that the evaporation of low-mass members from outer regions of the clusters is not significant at larger Galactocentric distances. It is concluded that the initial mass function (IMF) in the anticentre direction of the Galaxy might have been steeper than the IMF in the opposite direction. A comparison of the observed CMDs of the clusters with synthetic CMDs gives a photometric binary content of ~40%.
We present $UBVI_C$ CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be $sim$ 10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between $E(B-V) simeq$ 1.4 to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as $3.7pm0.3$. The distance of the cluster is found to be $1.00pm0.05$ kpc. Using near-infrared colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between $<1$ Myr to $sim$ 2 Myr, whereas the mean age of the massive stars in the cluster region is found to be $sim$ 2 Myr. There is evidence for second generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, $Gamma$, in the mass range $2.5 < M/M_odot le 28$ is found to be $-1.01pm0.11$ which is shallower than the Salpeter value (-1.35), whereas in the mass range $1.5 < M/M_odot le 2.5$ the slope is almost flat. The slope of the K-band luminosity function is estimated as $0.27pm0.02$, which is smaller than the average value ($sim$0.4) reported for young embedded clusters. Approximately 32% of H$alpha$ emission stars of Be 59 exhibit NIR excess indicating that inner disks of the T-Tauri star (TTS) population have not dissipated. The MSX and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا