ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate submicron ferromagnetic PdNi thin-film strips intended as contact electrodes for carbon nanotube-based spintronic devices. The magnetic anisotropy and micromagnetic structure are measured as function of temperature and aspect ratio. Co ntrary to the expectation from shape anisotropy, magnetic hysteresis measurements of Pd0.3Ni0.7 on arrays containing strips of various width point towards a magnetically easy axis in the sample plane, but transversal to the strip direction. Anisotropic magnetoresistance measured on individual Pd0.3Ni0.7 contact strips and magnetic force microscopy images substantiate that conclusion.
113 - M. Gaass , A. K. Huettel , K. Kang 2011
We investigate quantum dots in clean single-wall carbon nanotubes with ferromagnetic PdNi-leads in the Kondo regime. In most odd Coulomb valleys the Kondo resonance exhibits a pronounced splitting, which depends on the tunnel coupling to the leads an d an external magnetic field $B$, and only weakly on gate voltage. Using numerical renormalization group calculations, we demonstrate that all salient features of the data can be understood using a simple model for the magnetic properties of the leads. The magnetoconductance at zero bias and low temperature depends in a universal way on $g mu_B (B-B_c) / k_B T_K$, where $T_K$ is the Kondo temperature and $B_c$ the external field compensating the splitting.
Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potent ial using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.
We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the single-electron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a nearby antenna; the mechanical resonance is detected in the time-averaged current through the nanotube. Sharp, gate-tuneable resonances due to the bending mode of the nanotube are observed, combining resonance frequencies of up to u_0 = 350 MHz with quality factors above Q = 10^5, much higher than previously reported results on suspended carbon nanotube resonators. The measured magnitude and temperature dependence of the Q-factor shows a remarkable agreement with the intrinsic damping predicted for a suspended carbon nanotube. By adjusting the RF power on the antenna, we find that the nanotube resonator can easily be driven into the non-linear regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا