ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of dynamical processes in protoplanetary disks is essential to understand planet formation. In this context, transition disks are prime targets because they are at an advanced stage of disk clearing and may harbor direct signatures of disk evolution. In this paper, we aim to derive new constraints on the structure of the transition disk MWC 758, to detect non-axisymmetric features and understand their origin. We obtained infrared polarized intensity observations of the protoplanetary disk MWC 758 with SPHERE/VLT at 1.04 microns to resolve scattered light at a smaller inner working angle (0.093) and a higher angular resolution (0.027) than previously achieved. We observe polarized scattered light within 0.53 (148 au) down to the inner working angle (26 au) and detect distinct non-axisymmetric features but no fully depleted cavity. The two small-scale spiral features that were previously detected with HiCIAO are resolved more clearly, and new features are identified, including two that are located at previously inaccessible radii close to the star. We present a model based on the spiral density wave theory with two planetary companions in circular orbits. The best model requires a high disk aspect ratio (H/r~0.20 at the planet locations) to account for the large pitch angles which implies a very warm disk. Our observations reveal the complex morphology of the disk MWC758. To understand the origin of the detected features, the combination of high-resolution observations in the submillimeter with ALMA and detailed modeling is needed.
85 - A. Kospal , A. Moor , A. Juhasz 2013
The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we report on the detection of 12CO and 13CO in the J=2-1 and J=3-2 transitions and C18O in the J=2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r_in < 26 AU, r_out = 138 +/- 20 AU, M_*=1.8 +0.5 -0.2 M_Sun, and i = 32.6 +/- 3.1 degrees. The total CO mass, as calculated from the optically thin C18O line, is about (4-8) x 10^-2 M_Earth, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from the ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not co-located, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not co-located. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.
The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracer s of distinct physical regions. In particular, DCO+ is expected to have an enhanced abundance within a few Kelvin of the CO freezeout temperature of 19 K, making it a useful probe of the cold disk midplane. We compare ALMA line observations of HD 163296 to a grid of models. We vary the upper- and lower-limit temperatures of the region in which DCO+ is present as well as the abundance of DCO+ in order to fit channel maps of the DCO+ J=5-4 line. To determine the abundance enhancement compared to the general interstellar medium, we carry out similar fitting to HCO+ J=4-3 and H13CO+ J=4-3 observations. ALMA images show centrally peaked extended emission from HCO+ and H13CO+. DCO+ emission lies in a resolved ring from ~110 to 160 AU. The outer radius approximately corresponds to the size of the CO snowline as measured by previous lower resolution observations of CO lines in this disk. The ALMA DCO+ data now resolve and image the CO snowline directly. In the best fitting models, HCO+ exists in a region extending from the 19 K isotherm to the photodissociation layer with an abundance of 3x10^-10 relative to H2. DCO+ exists within the 19-21 K region of the disk with an abundance ratio [DCO+] / [HCO+] = 0.3. This represents a factor of 10^4 enhancement of the DCO+ abundance within this narrow region of the HD 163296 disk. Such a high enhancement has only previously been seen in prestellar cores. The inferred abundances provide a lower limit to the ionization fraction in the midplane of the cold outer disk (approximately greater than 4x10^-10), and suggest the utility of DCO+ as a tracer of its parent molecule H2D+. Abridged
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated wi th the farthest knots. Here we present ALMA Science Verification data of CO J=2-1 and J=3-2 emission which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km/s. The emission has a double corkscrew morphology and extends more than 10 from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet which is moving at much higher velocities. We show that the J=3-2 emission is likely heavily filtered by the interferometer, but the J=2-1 emission suffers less due to the larger beam and measurable angular scales. Excitation analysis suggests temperatures exceeding 900 K in these compact features, with the wind mass, momentum and energy being of order 10^{-5} M_sun, 10^{-4} M_sun km/s and 10^{40} erg respectively. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star.
Submillimetre images of transition discs are expected to reflect the distribution of the optically thin dust. Former observation of three transition discs LkHa330, SR21N, and HD1353444B at submillimetre wavelengths revealed images which cannot be mod elled by a simple axisymmetric disc. We show that a large-scale anticyclonic vortex that develops where the viscosity has a large gradient (e.g., at the edge of the disc dead zone), might be accountable for these large-scale asymmetries. We modelled the long-term evolution of vortices being triggered by the Rossby wave instability. We found that a horseshoe-shaped (azimuthal wavenumber m=1) large-scale vortex forms by coalescing of smaller vortices within 5x10^4 yr, and can survive on the disc life-time (~5x10^6 yr), depending on the magnitude of global viscosity and the thickness of the viscosity gradient. The two-dimensional grid-based global disc simulations with local isothermal approximation and compressible-gas model have been done by the GPU version of hydrodynamic code FARGO (GFARGO). To calculate the dust continuum image at submillimetre wavelengths, we combined our hydrodynamical results with a 3D radiative transfer code. By the striking similarities of the calculated and observed submillimetre images, we suggest that the three transition discs can be modelled by a disc possessing a large-scale vortex formed near the disc dead zone edge. Since the larger dust grains (larger than mm in size) are collected in these vortices, the non-axisymmetric submillimetre images of the above transition discs might be interpreted as active planet and planetesimal forming regions situated far (> 50 AU) from the central stars.
322 - P. Abraham 2009
Our Solar System originated in interstellar gas and dust; the latter is in the form of amorphous silicate particles and carbonaceous dust. The composition of cometary material shows that a significant fraction of the amorphous silicates was transform ed into crystalline form during the early evolution of the protosolar nebula. How and when this transformation happened has been controversial, with the main options being heating by the young Sun or shock heating. Here we report mid-infrared features in the outburst spectrum of the young solar-like star EX Lupi that were not present in quiescence. We attribute them to crystalline forsterite; the crystals were produced via thermal annealing in the surface layer of the inner disk by heat from the outburst, a process that has hitherto not been considered. The observed lack of cold crystals excludes shock heating at larger radii.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا