ترغب بنشر مسار تعليمي؟ اضغط هنا

We report evidence for dynamically significant rotation in the globular cluster systems of two luminous Virgo dwarf ellipticals, VCC1261 and VCC1528. Including previous results for VCC1087, the globular cluster systems of all three Virgo dwarf ellipt icals studied in detail to date exhibit v_rot/sigma > 1. Taking the rotation seen in the globular clusters as maximal disk rotation, we find all three dEs lie on the r-band Tully-Fisher relation. We argue that these data support the hypothesis that luminous dEs are the remnants of transformed disk galaxies. We also obtained deep, longslit data for the stars in VCC1261 and VCC1528. Both these galaxies show rapid rotation in their inner regions, with spatial scales of ~0.5 kpc. These rotation velocities are similar to those seen in the GC systems. Since our longslit data for Virgo dEs extend out to 1-2 effective radii (typical of deep observations), whereas the globular clusters extend out to 4--7 effective radii, we conclude that non-detections of rotation in many luminous dEs may simply be due to a lack of radial coverage in the stellar data, and that globular clusters represent singularly sensitive probes of the dynamics of dEs. Based on these data, we suggest that gas disks are significant sites of globular cluster formation in the early universe.
Integrated spectroscopy is the method of choice for deriving the ages of unresolved stellar systems. However, hot stellar evolutionary stages, such as hot horizontal branch stars and blue straggler stars (BSSs), can affect the integrated ages measure d using Balmer lines. Such hot, non-canonical stars may lead to overestimations of the temperature of the main sequence turn-off, and therefore underestimations of the integrated age of a stellar population. Using an optimized Hbeta index in conjunction with HST/WFPC2 color-magnitude diagrams (CMDs), we show that Galactic globular clusters exhibit a large scatter in their apparent spectroscopic ages, which does not correspond to that in their CMD-derived ages. We find for the first time that the specific frequency of BSSs, defined within the same aperture as the integrated spectra, shows a clear correspondence with Hbeta in the sense that, at fixed metallicity, higher BSS ratios lead to younger apparent spectroscopic ages. Thus, the specific frequency of BSSs in globular clusters sets a fundamental limit on the accuracy for which spectroscopic ages can be determined for globular clusters, and maybe for other stellar systems like galaxies. The observational implications of this result are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا