ترغب بنشر مسار تعليمي؟ اضغط هنا

Results are presented from the first cometary observations using the Atacama Large Millimeter/Submillimeter Array (ALMA), including measurements of the spatially-resolved distributions of HCN, HNC, H$_2$CO and dust within the comae of two comets: C/2 012 F6 (Lemmon) and C/2012 S1 (ISON), observed at heliocentric distances of 1.5 AU and 0.54 AU, respectively. These observations (with angular resolution $approx0.5$), reveal an unprecedented level of detail in the distributions of these fundamental cometary molecules, and demonstrate the power of ALMA for quantitative measurements of the distributions of molecules and dust in the inner comae of typical bright comets. In both comets, HCN is found to originate from (or within a few hundred km of) the nucleus, with a spatial distribution largely consistent with spherically-symmetric, uniform outflow. By contrast, the HNC distributions are clumpy and asymmetrical, with peaks at cometocentric radii $sim$500-1000~km, consistent with release of HNC in collimated outflow(s). Compared to HCN, the H$_2$CO distribution in comet Lemmon is very extended. The interferometric visibility amplitudes are consistent with coma production of H$_2$CO and HNC from unidentified precursor material(s) in both comets. Adopting a Haser model, the H$_2$CO parent scale-length is found to be a few thousand km in Lemmon and only a few hundred km in ISON, consistent with destruction of the precursor by photolysis or thermal degradation at a rate which scales in proportion to the Solar radiation flux.
We report the first sub-arc second (0.65$arcsec$ $times$ 0.51$arcsec$) image of the dimethyl ether molecule, (CH$_{3}$)$_{2}$O, toward the Orion Kleinmann-Low nebula (Orion--KL). The observations were carried at 43.4 GHz with the Expanded Very Large Array (EVLA). The distribution of the lower energy transition 6$_{1,5} - 6_{0,6}$, EE (E$rm_{u}$ = 21 K) mapped in this study is in excellent agreement with the published dimethyl ether emission maps imaged with a lower resolution. The main emission peaks are observed toward the Compact Ridge and Hot Core southwest components, at the northern parts of the Compact Ridge and in an intermediate position between the Compact Ridge and the Hot Core. A notable result is that the distribution of dimethyl ether is very similar to that of another important larger O-bearing species, the methyl formate (HCOOCH$_{3}$), imaged at lower resolution. Our study shows that higher spectral resolution (WIDAR correlator) and increased spectral coverage provided by the EVLA offer new possibilities for imaging complex molecular species. The sensitivity improvement and the other EVLA improvements make this instrument well suited for high sensitivity, high angular resolution, molecular line imaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا