ترغب بنشر مسار تعليمي؟ اضغط هنا

We report time-of-flight neutron scattering measurements of the magnetic spectrum of Tb3+ in Tb2Ti2O7. The data, which extend up to 120 meV and have calibrated intensity, enable us to consolidate and extend previous studies of the single-ion crystal field spectrum. We successfully refine a model for the crystal field potential in Tb2Ti2O7 without relying on data from other rare earth titanate pyrochlores, and we confirm that the ground state is a non-Kramers doublet with predominantly |+/-4> components. We compare the model critically with earlier models.
We report powder and single crystal neutron diffraction measurements of the magnetic order in AMnBi2 (A = Sr and Ca), two layered manganese pnictides with anisotropic Dirac fermions on a Bi square net. Both materials are found to order at TN approx 3 00 K in k = 0 antiferromagnetic structures, with ordered Mn moments at T = 10 K of approximately 3.8 muB aligned along the c axis. The magnetic structures are Neel-type within the Mn--Bi layers but the inter-layer ordering is different, being antiferromagnetic in SrMnBi2 and ferromagnetic in CaMnBi2. This allows a mean-field coupling of the magnetic order to Bi electrons in CaMnBi2 but not in SrMnBi2. We find clear evidence that magnetic order influences electrical transport. First principles calculations explain the experimental observations and suggest that the mechanism for different inter-layer ordering in the two compounds is the competition between the anteiferromagnetic superexchange and ferromagnetic double exchange carried by itinerant Bi electrons.
Soft resonant x-ray Bragg diffraction (SRXD) at the Ho M$_{4,5}$ edges has been used to study Ho $4f$ multipoles in the combined magnetic and orbitally ordered phase of HoB$_2$C$_2$. A full description of the energy dependence for both $sigma$ and $p i$ incident x-rays at two different azimuthal angles, as well as the ratio $I_sigma/I_pi$ as a function of azimuthal angle for a selection of energies, allows a determination of the higher order multipole moments of rank 1 (dipole) to 6 (hexacontatetrapole). The Ho 4f multipole moments have been estimated, indicating a dominant hexadecapole (rank 4) order with an almost negligible influence from either the dipole or the octupole magnetic terms. The analysis incorporates both the intra-atomic magnetic and quadrupolar interactions between the 3d core and 4f valence shells as well as the interference of contributions to the scattering that behave differently under time reversal. Comparison of SRXD, neutron diffraction and non resonant x-ray diffraction shows that the magnetic and quadrupolar order parameter are distinct. The $(0 0 1/2)$ component of the magnetic order exhibits a Brillouin type increase below the orbital ordering temperature T$_Q$, while the quadrupolar order increases more sharply. We conclude the quadrupolar interaction is strong, but quadrupolar order only occurs when the magnetic order gives rise to a quasi doublet ground state, which results in a lock-in of the orbitals at T$_Q$.
Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measu rement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا