ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a muon spin rotation (muSR) study of the magnetic and superconducting properties of single crystals of electron-doped BaFe2-xCoxAs2 with x=0.08, 0.20, and 0.25 (Tc=9, 25 and 20K) and of polycrystalline hole-doped Pr1-xSrxFeAsO with x=0 and 0.2 (Tc=15 K). In the former series we observe some interesting parallels with the electron doped SmFeAsO1-xFx 1111-type system [A.J. Drew et al., to appear in Nature Materials 2009 and arXiv:0807.4876]. In particular, we obtain evidence that strongly disordered static magnetism coexists with superconductivity on a microscopic scale in underdoped samples and even at optimum doping there is a slowing down (or enhancement) of dynamic magnetic correlations below Tcapprox25K. To the contrary, for the hole-doped Pr1-xSrxFeAsO samples we obtain evidence for a mesoscopic phase segregation into regions with nearly unperturbed AF order and others that are non magnetic and most likely superconducting. The observed trend resembles the one that was previously reported for hole-doped Ba1-xKxFe2As2 [A.A. Aczel et al., Phys. Rev. B 78, 214503 (2008); J.T. Park et al., arXiv:0811.2224] and thus seems to be fairly common in these hole doped systems.
The recent observation of superconductivity with critical temperatures up to 55 K in the FeAs based pnictide compounds marks the first discovery of a non copper-oxide based layered high-Tc superconductor (HTSC) [1-3]. It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprates, since both exhibit superconductivity following charge doping of a magnetic parent material. Here we present a muon spin rotation study on SmFeAsO1-xFx (x=0-0.30), which shows that static magnetism persists well into the superconducting regime. The analogy with the cuprates is quite surprising since the parent compounds appear to have different magnetic ground states: itinerant spin density wave for the pnictides contrasted with the Mott-Hubbard insulator in the cuprates. Our findings suggest that proximity to magnetic order and associated soft magnetic fluctuations, rather than the strong electronic correlations in the vicinity of a Mott-Hubbard-metal-to-insulator transition, may be the key ingredients of HTSC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا