ترغب بنشر مسار تعليمي؟ اضغط هنا

We carried out extremely sensitive Submillimeter Array (SMA) 340 GHz (860 micron) continuum imaging of a complete sample of SCUBA 850 micron sources (>4 sigma) with fluxes >3 mJy in the GOODS-N. Using these data and new SCUBA-2 data, we do not detect 4 of the 16 SCUBA sources, and we rule out the original SCUBA fluxes at the 4 sigma level. Three more resolve into multiple fainter SMA galaxies, suggesting that our understanding of the most luminous high-redshift dusty galaxies may not be as reliable as we thought. 10 of the 16 independent SMA sources have spectroscopic redshifts (optical/infrared or CO) to z=5.18. Using a new, ultradeep 20 cm image obtained with the Karl G. Jansky Very Large Array (rms of 2.5 microJy), we find that all 16 of the SMA sources are detected at >5 sigma. Using Herschel far-infrared (FIR) data, we show that the five isolated SMA sources with Herschel detections are well described by an Arp 220 spectral energy distribution template in the FIR. They also closely obey the local FIR-radio correlation, a result that does not suffer from a radio bias. We compute the contribution from the 16 SMA sources to the universal star formation rate (SFR) per comoving volume. With individual SFRs in the range 700-5000 solar masses per year, they contribute ~30% of the extinction-corrected ultraviolet-selected SFR density from z=1 to at least z=5. Star formation histories determined from extinction-corrected ultraviolet populations and from submillimeter galaxy populations only partially overlap, due to the extreme ultraviolet faintness of some submillimeter galaxies.
Recent cosmological modeling efforts have shown that a local underdensity on scales of a few hundred Mpc (out to z ~ 0.1), could produce the apparent acceleration of the expansion of the universe observed via type Ia supernovae. Several studies of ga laxy counts in the near-infrared (NIR) have found that the local universe appears under-dense by ~25-50% compared with regions a few hundred Mpc distant. Galaxy counts at low redshifts sample primarily L ~ L* galaxies. Thus, if the local universe is under-dense, then the normalization of the NIR galaxy luminosity function (LF) at z>0.1 should be higher than that measured for z<0.1. Here we present a highly complete (> 90%) spectroscopic sample of 1436 galaxies selected in the H-band to study the normalization of the NIR LF at 0.1<z<0.3 and address the question of whether or not we reside in a large local underdensity. We find that for the combination of our six fields, the product phi* L* at 0.1 < z < 0.3 is ~ 30% higher than that measured at lower redshifts. While our statistical errors in this measurement are on the ~10% level, we find the systematics due to cosmic variance may be larger still. We investigate the effects of cosmic variance on our measurement using the COSMOS cone mock catalogs from the Millennium simulation and recent empirical estimates. We find that our survey is subject to systematic uncertainties due to cosmic variance at the 15% level ($1 sigma), representing an improvement by a factor of ~ 2 over previous studies in this redshift range. We conclude that observations cannot yet rule out the possibility that the local universe is under-dense at z<0.1.
We describe a method for obtaining a flux-limited sample of Ly-alpha emitters from GALEX grism data. We show that the multiple GALEX grism images can be converted into a three-dimensional (two spatial axes and one wavelength axis) data cube. The wave length slices may then be treated as narrowband images and searched for emission-line galaxies. For the GALEX NUV grism data, the method provides a Ly-alpha flux-limited sample over the redshift range z=0.67-1.16. We test the method on the Chandra Deep Field South field, where we find 28 Ly-alpha emitters with faint continuum magnitudes (NUV>22) that are not present in the GALEX pipeline sample. We measure the completeness by adding artificial emitters and measuring the fraction recovered. We find that we have an 80% completeness above a Ly-alpha flux of 10^-15 erg/cm^2/s. We use the UV spectra and the available X-ray data and optical spectra to estimate the fraction of active galactic nuclei in the selection. We report the first detection of a giant Ly-alpha blob at z<1, though we find that these objects are much less common at z=1 than at z=3. Finally, we compute limits on the z~1 Ly-alpha luminosity function and confirm that there is a dramatic evolution in the luminosity function over the redshift range z=0-1.
83 - L. Trouille , A. J. Barger , 2011
The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([OIII]/H{beta} versus [NII]/H{alpha}, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation <BPT-SF> from those dominated by AGN activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [NII]{lambda}6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g-z color, [NeIII]{lambda}3869, and [OII]{lambda}{lambda}3726 + 3729 and can be used for galaxies out to z < 1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray selected AGNs as BPT-SF. We use the GOODS-N and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (<{Gamma}eff> = 1.0 +/-0.4) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime.
We compare optical and hard X-ray identifications of AGNs using a uniformly selected (above a flux limit of f_2-8 keV = 3.5e-15 erg/cm2/s) and highly optically spectroscopically complete ( > 80% for f_2-8 keV > 1e-14 erg/cm2/s and > 60% below) 2-8 ke V sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N). We find that empirical emission-line ratio diagnostic diagrams misidentify 20-50% of the X-ray selected AGNs that can be put on these diagrams as star formers, depending on which division is used. We confirm that there is a large (2 orders in magnitude) dispersion in the log ratio of the [OIII]5007A to hard X-ray luminosities for the non-broad line AGNs, even after applying reddening corrections to the [OIII] luminosities. We find that the dispersion is similar for the broad-line AGNs, where there is not expected to be much X-ray absorption from an obscuring torus around the AGN nor much obscuration from the galaxy along the line-of-sight if the AGN is aligned with the galaxy. We postulate that the X-ray selected AGNs that are misidentified by the diagnostic diagrams have low [OIII] luminosities due to the complexity of the structure of the narrow-line region, which causes many ionizing photons from the AGN not to be absorbed. This would mean that the [OIII] luminosity can only be used to predict the X-ray luminosity to within a factor of ~3 (one sigma). Despite selection effects, we show that the shapes and normalizations of the [OIII] and transformed hard X-ray luminosity functions show reasonable agreement, suggesting that the [OIII] samples are not finding substantially more AGNs at low redshifts than hard X-ray samples.
We compare the optical spectral types with the X-ray spectral properties for a uniformly selected (sources with fluxes greater than the 3 sigma level and above a flux limit of f_2-8 keV > 3.5x10^-15 erg/cm2/s), highly spectroscopically complete (>80% for f_2-8 keV > 10^-14 erg/cm2/s and >60% below) 2-8 keV X-ray sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N) that cover ~1.2 deg^2. For our sample of 645 spectroscopically observed sources, we confirm that there is significant overlap of the X-ray spectral properties, as determined by the effective photon indices, Geff, obtained from the ratios of the 0.5-2 keV to 2-8 keV counts, for the different optical spectral types. For example, of the broad-line AGNs (non-broad-line AGNs), 20% +/- 3% (33% +/- 4%) have Geff<1.2 (Geff > 1.2). Thus, one cannot use the X-ray spectral classifications and the optical spectral classifications equivalently. Since it is not understood how X-ray and optical classifications relate to the obscuration of the central engine, we strongly advise against a mixed classification scheme, as it can only complicate the interpretation of X-ray AGN samples. We confirm the dependence of optical spectral type on X-ray luminosity, and for z<1, we find a similar luminosity dependence of Geff. However, this dependence breaks down at higher redshifts due to the highly redshift-dependent nature of Geff. We therefore also caution that any classification scheme which depends on Geff is likely to suffer from serious redshift bias.
48 - L. Trouille 2008
We present the redshift catalogs for the X-ray sources detected in the Chandra Deep Field North (CDF-N), the Chandra Large Area Synoptic X-ray Survey (CLASXS), and the Chandra Lockman Area North Survey (CLANS). The catalogs for the CDF-N and CLASXS f ields include redshifts from previous work, while the redshifts for the CLANS field are all new. For fluxes above 10^-14 ergs cm^-2 s^-1 (2-8 keV) we have redshifts for 76% of the sources. We extend the redshift information for the full sample using photometric redshifts. The goal of the OPTX Project is to use these three surveys, which are among the most spectroscopically complete surveys to date, to analyze the effect of spectral type on the shape and evolution of the X-ray luminosity functions and to compare the optical spectral types with the X-ray spectral properties. We also present the CLANS X-ray catalog. The nine ACIS-I fields cover a solid angle of ~0.6 square degrees and reach fluxes of 7x10^-16 ergs cm^-2 s^-1 (0.5-2 keV) and 3.5x10^-15 ergs cm^-2 s^-1 (2-8 keV). We find a total of 761 X-ray point sources. Additionally, we present the optical and infrared photometric catalog for the CLANS X-ray sources, as well as updated optical and infrared photometric catalogs for the X-ray sources in the CLASXS and CDF-N fields. The CLANS and CLASXS surveys bridge the gap between the ultradeep pencil-beam surveys, such as the CDFs, and the shallower, very large-area surveys. As a result, they probe the X-ray sources that contribute the bulk of the 2-8 keV X-ray background and cover the flux range of the observed break in the logN-logS distribution. We construct differential number counts for each individual field and for the full sample.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا