ترغب بنشر مسار تعليمي؟ اضغط هنا

Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosec ond time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as non-deterministic distant spin entanglement. Given that we could suppress the measurement back-action to well below the natural spin-flip rate, realization of a quantum non-demolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 20 using a photonic nanostructure.
91 - J. Grond , W. Potz , A. Imamoglu 2008
A scheme for probabilistic entanglement generation between two distant single electron doped quantum dots, each placed in a high-Q microcavity, by detecting strong coherent light which has interacted dispersively with both subsystems and experienced Faraday rotation due to the spin selective trion transitions is discussed. In order to assess the applicability of the scheme for distant entanglement generation between atomic qubits proposed by T.D. Ladd et al. [New J. Phys. 8, 184 (2006)] to two distant quantum dots, one needs to understand the limitations imposed by hyperfine interactions of the quantum dot spin with the nuclear spins of the material and by non-identical quantum dots. Feasibility is displayed by calculating the fidelity for Bell state generation analytically within an approximate framework. The fidelity is evaluated for a wide range of parameters and different pulse lengths, yielding a trade-off between signal and decoherence, as well as a set of optimal parameters. Strategies to overcome the effect of non-identical quantum dots on the fidelity are examined and the timescales imposed by the nuclear spins are discussed, showing that efficient entanglement generation is possible with distant quantum dots. In this context, effects due to light hole transitions become important and have to be included. The scheme is discussed for one- as well as for two-sided cavities, where one must be careful with reflected light which carries spin information. The validity of the approximate method is checked by a more elaborate semiclassical simulation which includes trion formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا