ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - A. Ibragimov 2011
The twelfth accretion-powered millisecond pulsar, IGR J17511-3057, was discovered in September 2009. In this work we study its spectral and timing properties during the 2009 outburst based on Swift and RXTE data. Our spectral analysis of the source i ndicates only slight spectral shape evolution during the entire outburst. The equivalent width of the iron line and the apparent area of the blackbody emission associated with the hotspot at the stellar surface both decrease significantly during the outburst. This is consistent with a gradual receding of the accretion disc as the accretion rate drops. The pulse profile analysis shows absence of dramatic shape evolution with a moderate decrease in pulse amplitude. This behaviour might result from a movement of the accretion column footprint towards the magnetic pole as the disc retreats. The time lag between the soft and the hard energy pulses increase by a factor of two during the outburst. A physical displacement of the centroid of the accretion shock relative to the blackbody spot or changes in the emissivity pattern of the Comptonization component related to the variations of the accretion column structure could cause this evolution. We have found that IGR J17511-3057 demonstrates outburst stages similar to those seen in SAX J1808.4-3658. A transition from the slow decay into the rapid drop stage, associated with the dramatic flux decrease, is also accompanied by a pulse phase shift which could result from an appearance of the secondary spot due to the increasing inner disc radius.
334 - A. Ibragimov 2007
We study theoretical interpretations of the 150-d (superorbital) modulation observed in X-ray and radio emission of Cyg X-1 in the framework of models connecting this phenomenon to precession. Precession changes the orientation of the emission source (either disc or jet) relative to the observer. This leads to emission modulation due to an anisotropic emission pattern of the source or orientation-dependent amount of absorbing medium along the line of sight or both. We consider, in particular, anisotropy patterns of blackbody-type emission, thermal Comptonization in slab geometry, jet/outflow beaming, and absorption in a coronal-type medium above the disc. We then fit these models to the data from the RXTE/ASM, CGRO/BATSE, and the Ryle and Green Bank radio telescopes, and find relatively small best-fit angles between the precession and orbital planes, ~10-20 degrees. The thermal Comptonization model for the X-ray emission explains well the observed decrease of the variability amplitude from 1 to 300 keV as a result of a reduced anisotropy of the emission due to multiple scatterings. Our modeling also yield the jet bulk velocity of ~(0.3-0.5)c, which is in agreement with the previous constraint from the lack of an observed counterjet and lack of short-term X-ray/radio correlations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا