ترغب بنشر مسار تعليمي؟ اضغط هنا

We review a new interdisciplinary field between Geology and Physics: the study of the Earths geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earths geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted.
We derive the event-by-event likelihood that allows to extract the complete information contained in the energy, time and direction of supernova neutrinos, and specify it in the case of SN1987A data. We resolve discrepancies in the previous literatur e, numerically relevant already in the concrete case of SN1987A data.
Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا