ترغب بنشر مسار تعليمي؟ اضغط هنا

We have calculated surface energies and surface magnetic order of various low-indexed surfaces of monoatomic Fe, Co, and Pt, and binary, ordered FePt, CoPt, and MnPt using density functional theory. Our results for the binary systems indicate that el emental, Pt-covered surfaces are preferred over Fe- and Co-covered and mixed surfaces of the same orientation. The lowest energy orientation for mixed surfaces is the highly coordinated (111) surface. We find Pt-covered (111) surfaces, which can be realized in the L11 structure only, to be lower in energy by about 400 meV/atom compared to the mixed L10 (111) surface. We conclude that this low surface energy stabilizes the L11 structure in small nanoparticles, which is suppressed in bulk alloys, but has been recently synthesized as thin film for CoPt. From the interplay of surface and bulk energies, equilibrium shapes of single-crystalline ordered nanoparticles and crossover sizes between the different orderings can be estimated.
124 - A. Hucht , S. Buschmann , P. Entel 2007
Iron, cobalt and nickel nanoparticles, grown in the gas phase, are known to arrange in chains and bracelet-like rings due to the long-range dipolar interaction between the ferromagnetic (or super-paramagnetic) particles. We investigate the dynamics a nd thermodynamics of such magnetic dipolar nanoparticles for low densities using molecular dynamics simulations and analyze the influence of temperature and external magnetic fields on two- and three-dimensional systems. The obtained phase diagrams can be understood by using simple energetic arguments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا