ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stoch astic projected Gross-Pitaevskii theory to provide the first quantitative description of the full momentum distribution measurements of Van Amerongen et al., Phys. Rev. Lett. 100, 090402 (2008). We find the fitted temperatures from the stochastic projected Gross-Pitaevskii approach are in excellent agreement with those determined by Yang-Yang kinetic-energy thermometry.
We present the implementation of tailored trapping potentials for ultracold gases on an atom chip. We realize highly elongated traps with box-like confinement along the long, axial direction combined with conventional harmonic confinement along the t wo radial directions. The design, fabrication and characterization of the atom chip and the box traps is described. We load ultracold ($lesssim1 mu$K) clouds of $^{87}$Rb in a box trap, and demonstrate Bose-gas focusing as a means to characterize these atomic clouds in arbitrarily shaped potentials. Our results show that box-like axial potentials on atom chips are very promising for studies of one-dimensional quantum gases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا