ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper explores the effect of the LMC on the mass estimates obtained from the timing argument. We show that accounting for the presence of the LMC systematically lowers the Local Group mass ($M_{rm LG}$) derived from the relative motion of the Mi lky Way--Andromeda pair. Motivated by this result we apply a Bayesian technique devised by Pe~narrubia et al. (2014) to simultaneously fit (i) distances and velocities of galaxies within 3~Mpc and (ii) the relative motion between the Milky Way and Andromeda derived from HST observations, with the LMC mass ($M_{rm LMC}$) as a free parameter. Our analysis returns a Local Group mass $M_{rm LG}=2.64^{+0.42}_{-0.38}times 10^{12}M_odot$ at a 68% confidence level. The masses of the Milky Way, $M_{rm MW}=1.04_{-0.23}^{+0.26}times 10^{12}M_odot$, and Andromeda, $M_{rm M31}=1.33_{-0.33}^{+0.39}times 10^{12}M_odot$, are consistent with previous estimates that neglect the impact of the LMC on the observed Hubble flow. We find a (total) LMC mass $M_{rm LMC}=0.25_{-0.08}^{+0.09}times 10^{12}M_odot$, which is indicative of an extended dark matter halo and supports the scenario where this galaxy is just past its first pericentric approach. Consequently, these results suggest that the LMC may induce significant perturbations on the Galactic potential.
Smectic order has been generated in superconducting Nb films with two-fold symmetry arrays of symmetric pinning centers. Magnetic fields applied perpendicularly to the films develop a vortex matter smectic phase that is easily detected when the vorti ces commensurate with the pinning center array. The smectic phase can be turned on and off with external parameters.
We present a simple nanodevice that can operate in two modes: i) three-state memory and ii) reading device. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film. The input signal is ac current and the output signal is dc voltage. Vortex ratchet effect in combination with out of plane magnetic anisotropy of the nanomagnets is the background physics which governs the nanodevice performance.
By analyzing a N-body simulation of a bulge formed simply via a bar instability mechanism operating on a kinematically cold stellar disk, and by comparing the results of this analysis with the structural and kinematic properties of the main stellar p opulations of the Milky Way bulge, we conclude that the bulge of our Galaxy is not a pure stellar bar formed from a pre-existing thin stellar disk, as some studies have recently suggested. On the basis of several arguments emphasized in this paper, we propose that the bulge population which, in the Milky Way, is observed not to be part of the peanut structure corresponds to the old galactic thick disk, thus implying that the Milky Way is a pure thin+thick disk galaxy, with only a possible limited contribution of a classical bulge.
We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investi gate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. We find several kinematic variables that allow for a clean signal extraction and we show that the parameter space of this model will be well probed during LHC Run-II. Finally, we investigate the possibility of detecting this type of dark matter via its annihilations into gamma rays. We compute the continuum and the line emission (which includes a possible Higgs in Space line) and its possible discovery by future gamma-ray telescopes. We find that the annihilation spectrum has distinctive features which may distinguish it from other models.
By means of idealized, dissipationless N-body simulations which follow the formation and subsequent buckling of a stellar bar, we study the characteristics of boxy/peanut-shaped bulges and compare them with the properties of the stellar populations i n the Milky Way bulge. The main results of our modeling, valid for the general family of boxy/peanut shaped bulges, are the following: (i) because of the spatial redistribution in the disk initiated at the epoch of bar formation, stars from the innermost regions to the outer Lindblad resonance of the stellar bar are mapped into a boxy bulge; (ii) the contribution of stars to the local bulge density depends on their birth radius: stars born in the innermost disk tend to dominate the innermost regions of the boxy bulge, while stars originating closer to the OLR are preferentially found in the outer regions of the boxy/peanut structure; (iii) stellar birth radii are imprinted in the bulge kinematics, the larger the birth radii of stars ending up in the bulge, the greater their rotational support and the higher their line-of- sight velocity dispersions (but note that this last trend depends on the bar viewing angle); (iv) the higher the classical bulge-over-disk ratio, the larger its fractional contribution of stars at large vertical distance from the galaxy mid-plane. (ABRIDGED) On the basis of their chemical and kinematic characteristics, the results of our modeling suggests that the populations A, B and C, as defined by the ARGOS survey, can be associated, respectively, with the inner thin disk, to the young thick and to the old thick disk, following the nomenclature recently suggested for stars in the solar neighborhood by Haywood et al. (2013).
As direct and indirect dark matter detection experiments continue to place stringent constraints on WIMP masses and couplings, it becomes imperative to expand the scope of the search for particle dark matter by looking in new and exotic places. One s uch place may be the core of active galactic nuclei where the density of dark matter is expected to be extremely high. Recently, several groups have explored the possibility of observing signals of dark matter from its interactions with the high-energy jets emanating from these galaxies. In this work, we build upon these analyses by including the other components of the WIMP-induced gamma ray spectrum of active galactic nuclei; namely, (1) the continuum from WIMP annihilation into light standard model states which subsequently radiate and/or decay into photons and (2) the direct (loop-induced) decay into photons. We work in the context of models of universal extra dimensions (in particular, a model with two extra dimensions) and compute all three components of the gamma ray spectrum and compare with current data. We find that the model with two extra dimensions exhibits several interesting features which may be observable with the Fermi gamma ray telescope. We also show that, in conjunction with other measurements, the gamma ray spectrum from AGN can be an invaluable tool for restricting WIMP parameter space.
The munuSSM is a supersymmetric model that has been proposed to solve the problems generated by other supersymmetric extensions of the standard model of particle physics. Given that R-parity is broken in the munuSSM, the gravitino is a natural candid ate for decaying dark matter since its lifetime becomes much longer than the age of the Universe. In this model, gravitino dark matter could be detectable through the emission of a monochromatic gamma ray in a two-body decay. We study the prospects of the Fermi-LAT telescope to detect such monochromatic lines in 5 years of observations of the most massive nearby extragalactic objects. The dark matter halo around the Virgo galaxy cluster is selected as a reference case, since it is associated to a particularly high signal-to-noise ratio and is located in a region scarcely affected by the astrophysical diffuse emission from the galactic plane. The simulation of both signal and background gamma-ray events is carried out with the Fermi Science Tools, and the dark matter distribution around Virgo is taken from a N-body simulation of the nearby extragalactic Universe, with constrained initial conditions provided by the CLUES project. We find that a gravitino with a mass range of 0.6 to 2 GeV, and with a lifetime range of about 3x10^27 to 2x10^28 s would be detectable by the Fermi-LAT with a signal-to-noise ratio larger than 3. We also obtain that gravitino masses larger than about 4 GeV are already excluded in the munuSSM by Fermi-LAT data of the galactic halo
67 - V. Hill , A. Lecureur , A. Gomez 2011
We seek to constrain the formation of the Galactic bulge by means of analysing the detailed chemical composition of a large sample of red clump stars in Baades window. We measure [Fe/H] in a sample of 219 bulge red clump stars from R=20000 resolution spectra obtained with FLAMES/GIRAFFE at the VLT, using an automatic procedure, differentially to the metal-rich local reference star muLeo. For a subsample of 162 stars, we also derive [Mg/H] from spectral synthesis around the MgI triplet at 6319A. The Fe and Mg metallicity distributions are both asymmetric, with median values of +0.16 and +0.21 respectively. The iron distribution is clearly bimodal, as revealed both by a deconvolution (from observational errors) and a Gaussian decomposition. The decomposition of the observed Fe and Mg metallicity distributions into Gaussian components yields two populations of equal sizes (50% each): a metal-poor component centred around [Fe/H]=-0.30 and [Mg/H]=-0.06 with a large dispersion and a narrow metal-rich component centred around [Fe/H]=+0.32 and [Mg/H]=+0.35. The metal poor component shows high [Mg/Fe] ratios (around 0.3) whereas stars in the metal rich component are found to have near solar ratios. Babusiaux et al. (2010) also find kinematical differences between the two components: the metal poor component shows kinematics compatible with an old spheroid whereas the metal rich component is consistent with a population supporting a bar. In view of their chemical and kinematical properties, we suggest different formation scenarios for the two populations: a rapid formation timescale as an old spheroid for the metal poor component (old bulge) and for the metal rich component, a formation over a longer time scale driven by the evolution of the bar (pseudo-bulge).
By means of N-body simulations we study the response of a galactic disc to a minor merger event. We find that non-self-gravitating, spiral-like features are induced in the thick disc. As we have shown in a previous work, this ringing also leaves an i mprint in velocity space (the u-v plane) in small spatial regions, such as the solar neighbourhood. As the disc relaxes after the event, clumps in the u-v plane get closer with time, allowing us to estimate the time of impact. In addition to confirming the possibility of this diagnostic, here we show that in a more realistic scenario, the in-fall trajectory of the perturber gives rise to an azimuthal dependence of the structure in phase-space. We also find that the space defined by the energy and angular momentum of stars is a better choice than velocity space, as clumps remain visible even in large local volumes. This makes their observational detection much easier since one need not be restricted to a small spatial volume. We show that information about the time of impact, the mass of the perturber, and its trajectory is stored in the kinematics of disc stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا