ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - A. Goban , C.-L. Hung , S.-P. Yu 2013
The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics. Here, we report the development of the first integrated optical circuit with a photonic crystal capable of both localiz ing and interfacing atoms with guided photons in the device. By aligning the optical bands of a photonic crystal waveguide (PCW) with selected atomic transitions, our platform provides new opportunities for novel quantum transport and many-body phenomena by way of photon-mediated atomic interactions along the PCW. From reflection spectra measured with average atom number N = 1.1$pm$0.4, we infer that atoms are localized within the PCW by Casimir-Polder and optical dipole forces. The fraction of single-atom radiative decay into the PCW is $Gamma_{rm 1D}/Gamma$ = 0.32$pm$0.08, where $Gamma_{1D}$ is the rate of emission into the guided mode and $Gamma$ is the decay rate into all other channels. $Gamma_{rm 1D}/Gamma$ is quoted without enhancement due to an external cavity and is unprecedented in all current atom-photon interfaces.
We report the experimental realization of an optical trap that localizes single Cs atoms ~215 nm from surface of a dielectric nanofiber. By operating at magic wavelengths for pairs of counter-propagating red- and blue-detuned trapping beams, differen tial scalar light shifts are eliminated, and vector shifts are suppressed by ~250. We thereby measure an absorption linewidth Gamma/2pi = 5.7 pm 0.1 MHz for the Cs 6S1/2,F=4 - 6P3/2,F=5 transition, where Gamma/2pi = 5.2 MHz in free space. Optical depth d~66 is observed, corresponding to an optical depth per atom d_1~0.08. These advances provide an important capability for the implementation of functional quantum optical networks and precision atomic spectroscopy near dielectric surfaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا