ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we applied a quantum circuit treatment to describe the nuclear spin relax- ation. From the Redfield theory, we were able to describe the quadrupolar relaxation as a computational process in the case of spin 3/2 systems, through a model i n which the environment is comprised by seven qubits and three different quantum noise channels. The interaction between the environment and the spin 3/2 nuclei is then described by a quantum circuit fully compatible with the Redfield theory of relaxation. Theoretical predictions are compared to experimental data, a short review of quantum channels and relaxation in NMR qubits is also present.
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations duri ng a computation process, causing a loss of purity until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا