ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - P. Saracco 2014
[Abridged] We studied the size-surface brightness and the size-mass relations of a sample of 16 cluster elliptical galaxies in the mass range 10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS J0848+4453 at z=1.27. Our ai m is to assess whether they have completed their mass growth at their redshift or significant mass and/or size growth can or must take place until z=0 in order to understand whether elliptical galaxies of clusters follow the observed size evolution of passive galaxies. To compare our data with the local universe we considered the Kormendy relation derived from the early-type galaxies of a local Coma Cluster reference sample and the WINGS survey sample. The comparison with the local Kormendy relation shows that the luminosity evolution due to the aging of the stellar content already assembled at z=1.27 brings them on the local relation. Moreover, this stellar content places them on the size-mass relation of the local cluster ellipticals. These results imply that for a given mass, the stellar mass at z~1.3 is distributed within these ellipticals according to the same stellar mass profile of local ellipticals. We find that a pure size evolution, even mild, is ruled out for our galaxies since it would lead them away from both the Kormendy and the size-mass relation. If an evolution of the effective radius takes place, this must be compensated by an increase in the luminosity, hence of the stellar mass of the galaxies, to keep them on the local relations. We show that to follow the Kormendy relation, the stellar mass must increase as the effective radius. However, this mass growth is not sufficient to keep the galaxies on the size-mass relation for the same variation in effective radius. Thus, if we want to preserve the Kormendy relation, we fail to satisfy the size-mass relation and vice versa.
81 - P. Saracco 2012
[Abridged] In this paper we derive the central stellar mass density within a fixed radius and the effective stellar mass density within the effective radius for a complete sample of 34 ETGs morphologically selected at 0.9<z_{spec}<2 and compare them with those derived for a sample of ~900 local ETGs in the same mass range. We find that the central stellar mass density of high-z ETGs spans just an order of magnitude and it is similar to the one of local ETGs as actually found in previous studies.However, we find that the effective stellar mass density of high-z ETGs spans three orders of magnitude, exactly as the local ETGs and that it is similar to the effective stellar mass density of local ETGs showing that it has not changed since z~1.5, in the last 9-10 Gyr. Thus, the wide spread of the effective stellar mass density observed up to z~1.5 must originate earlier, at z>2. Also, we show that the small scatter of the central mass density of ETGs compared to the large scatter of the effective mass density is simply a peculiar feature of the Sersic profile hence, independent of redshift and of any assembly history experienced by galaxies. Thus, it has no connection with the possible inside-out growth of ETGs. Finally, we find a tight correlation between the central stellar mass density and the total stellar mass of ETGs in the sense that the central mass density increases with mass as M^{~0.6}. This implies that the fraction of the central stellar mass of ETGs decreases with the mass of the galaxy. These correlations are valid for the whole population of ETGs considered independently of their redshift suggesting that they originate in the early-phases of their formation.
95 - P. Saracco 2010
[Abridged]We present a study based on a sample of 62 early-type galaxies (ETGs) at 0.9<z_spec<2 aimed at constraining their past star formation and mass assembly histories. The sample is composed of normal ETGs having effective radii comparable to th e mean radius of local ones and of compact ETGs having effective radii from two to six times smaller. We do not find evidence of a dependence of the compactness of ETGs on their stellar mass. We find that the stellar mass of normal ETGs formed at z_form<3 while the stellar content of compact ETGs formed at 2<z_form<10 with a large fraction of them characterized by z_form>5. Earlier stars formed at z_form>5 are assembled in compact and more massive (M_*>10^11 M_sun) ETGs while stars later formed (z_form<3) or resulting from subsequent episodes of star formation are assembled both in compact and normal ETGs. Thus, the older the stellar population the higher the mass of the hosting galaxy but not vice versa. This suggests that the epoch of formation may play a role in the formation of massive ETGs rather than the mass itself. The possible general scheme in which normal <z>~1.5 ETGs are descendants of high-z compact spheroids enlarged through subsequent dry mergers is not compatible with the current models which predict a number of dry mergers two orders of magnitude lower than the one needed. Moreover, we do not find evidence supporting a dependence of the compactness of galaxies on their redshift of assembly. Finally, we propose a simple scheme of formation and assembly of the stellar mass of ETGs based on dissipative gas-rich merger which can qualitatively account for the co-existence of normal and compact ETGs observed at <z>~1.5 in spite of the same stellar mass, the lack of normal ETGs with high z_form and the absence of correlation between compactness, stellar mass and formation redshift.
We present an analysis of star formation and nuclear activity of about 28000 galaxies in a volume-limited sample taken from SDSS DR4 low-redshift catalogue (LRC) taken from the New York University Value Added Galaxy Catalogue (NYU-VAGC) of Blanton et al. 2005, with 0.005<z<0.037, ~90% complete to M_r=-18.0. We find that in high-density regions ~70 per cent of galaxies are passively evolving independent of luminosity. In the rarefied field, however, the fraction of passively evolving galaxies is a strong function of luminosity, dropping from 50 per cent for Mr <~ -21 to zero by Mr ~ -18. Moreover the few passively evolving dwarf galaxies in field regions appear as satellites to bright (>~ L*) galaxies. Moreover the fraction of galaxies with the optical signatures of an active galactic nucleus (AGN) decreases steadily from ~50% at Mr~-21 to ~0 per cent by Mr~-18 closely mirroring the luminosity dependence of the passive galaxy fraction in low-density environments (see fig. 1 continuous lines). This result reflects the increasing importance of AGN feedback with galaxy mass for their evolution, such that the star formation histories of massive galaxies are primarily determined by their past merger history.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا